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Preface

This report presents DSN progress in flight project support, TDA research and
technology, network engineering, hardware and software implementation, and

operations. Each issue presents material in some, but not all, of the following

categories in the order indicated:

Description of the DSN

Mission Support

Interplanetary Flight Projects

Planetary Flight Projects

Manned Space Flight Proiects

Advanced Flight Projects

Radio Science

Supporting Research and Technology

Tracking and Ground-Based Navigation

Comrnnnieations_ Speeder_aft/Ground

Station Control and Operations Technology

Network Control and Data Processing

Network Engineering and Implementation

Network Control System
Ground Communications

Deep Space Stations

Operations and Facilities

Network Operations

Network Control System Operations
Ground Communications

Deep Space Stations

Facility Engineering

In each issue, the part entitled "Description of the DSN" describes the func-

tions and facilities of the DSN and may report the current configuration of one

of the five DSN systems (Tracking, Telemetry, Command, Monitor and Control,

and Test and Training).

The work described in this report series is either performed or managed by

the Tracking and Data Acquisition organization of JPL for NASA.
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DSN Functions and Facilities

N. A. Renzetti

Mission Support Office

The obiectives, functions, and organization of the Deep Space Network are

summarized. The Deep Space Instrumentation Facility, the Ground Communica-

tions Facility, and the Network Control System are described.

The Deep Space Network (DSN), established by the

National Aeronautics and Space Administration (NASA)

Office of Tracking and Data Acquisition under the sys-

tem management and technical direction of the Jet Pro-

pulsion Laboratory (JPL), is designed for two-way com-

munications with unmanned spacecraft traveling approxi-

mately 16,000 km (10,000 mi) from Earth to planetary

distances. It supports or has supported, the following

NASA deep space exploration projects: Ranger, Surveyor,

Mariner Venus 1962, Mariner Mars 1964, Mariner Venus

67, Mariner Mars 1969, Mariner Mars 1971 (JPL); Lunar

Orbiter and Viking (Langley Research Center); Pioneer

(Ames Research Center); Helios (West Germany); and

Apollo (Manned Spacecraft Center), to supplement the

Spaceflight Tracking and Data Network (STDN).

The Deep Space Network is one of two NASA net-

works. The other, STDN, is under the system manage-

ment and technical direction of the Goddard Space Flight

Center. Its function is to support manned and unmanned

Earth-orbiting and lunar scientific and communications

satellites. Although the DSN was concerned with un-

manned lunar spacecraft in its early years, its primary

objective now and into the future is to continue its

support of planetary and interplanetary flight projects.

A development objective has been to keep the network

capability at the state of the art of telecommunications

and data handling and to support as many flight projects

as possible with a minimum of mission-dependent hard-

ware and software. The DSN provides direct support of

each flight project through that project's tracking and
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data system. This management element is responsible for

the design and operation of the hardware and software

in the DSN which are required for the conduct of flight

operations.

Beginning in FY 1973 a modified DSN interface has

been established with the flight projects. In lieu of the

SFOF, a multimission Mission Control and Computing

Center (MCCC) has been activated as a separate func-

tional and management element within JPL. This func-

tion, as negotiated with each flight project, will provide

all computing and mission operations support for missions

controlled from JPL. DSN computing support will be

provided separately by the DSN. Radio metric, telemetry,
and command data interfaces with the DSN are a joint

DSN, MCCC, and flight project responsibility. The

organization and procedures necessary to carry out

these new activities will be reported in this document
in the near future.

The DSN function, in supporting a flight project by

tracking the spacecraft, is characterized by five network

systems:

(1) DSN Tracking System. Generates radio metric

data; i.e., angles, one- and two-way doppler and

range, and transmits raw data to mission control.

(2) DSN Telemetry System. Receives, decodes, records,

and retransmits engineering and scientific data

generated in the spacecraft to Mission Control.

(3) DSN Command System. Accepts coded signals
from mission control via the GCF and transmits

them to the spacecraft in order to initiate space-

craft functions in flight.

(4) DSN Monitor and Control System. Instruments,

transmits, records, and displays those parameters

of the DSN necessary to verify configuration and

validate the network. Provides operational direc-

tion and configuration control of the network and

primary interface with flight project Mission Con-

trol personnel.

(5) DSN Test and Training System. Generates and

controls simulated data to support deveIopment,

test, training and fault isolation within the DSN.

Participates in mission simulation with flight

projects.

The facilities needed to carry out these functions have

evolved in three technical areas: (1) the Deep Space Sta-

tions (DSSs) and the telecommunications interface

through the RF link with the spacecraft is known as the

Deep Space Instrumentation Facility (DSIF); (2) the

Earth-based point-to-point voice and data communica-
tions from the stations to Mission Control is known as

the Ground Communications Facility (GCF); (3) the

network monitor and control function is known as the

Network Control System (NCS).

I. Deep Space Instrumentation Facility

A. Tracking and Data Acquisition Facilities

A world-wide set of Deep Space Stations with large

antennas, low-noise phase-lock receiving systems, and

high-power transmitters provide radio communications

with spacecraft. The DSSs and the deep space communi-

cations complexes (DSCCs) they comprise are given in
Table 1.

Radio contact with a spacecraft usually begins when

the spacecraft is on the launch vehicle at Cape Kennedy,

and it is maintained throughout the mission. The early

part of the trajectory is covered by selected network

stations of the Air Force Eastern Test Range (AFETR)

and the STDN of the Goddard Space Flight Center. 1

Normally, two-way communications are established be-

tween the spacecraft and the DSN within 30 rain after

the spacecraft has been injected into lunar, planetary, or

interplanetary flight. A compatibility test station at Cape

Kennedy (discussed later) tests and monitors the space-

craft continuously during the launch checkout phase. The

deep space phase begins with acquisition by 26-m DSSs.

These and the remaining DSSs listed in Table i provide
radio communications until the end of the mission.

To enable continuous radio contact with spacecraft, the

DSSs are located approximately 120 deg apart in longi-

tude; thus a spacecraft in deep space flight is always

within the field-of-view of at least one DSS, and for

several hours each day may be seen by two DSSs. Fur-

thermore, since most spacecraft on deep space missions

travel within 30 deg of the equatorial plane, the DSSs

are located within latitudes of 45 deg north and south of

the equator. All DSSs operate at S-band frequencies:

2110-2120 MHz for Earth-to-spacecraft transmission and

2290-2300 MHz for spacecraft-to-Earth transmission. An

X-band capability is being readied for future missions

beginning in 1973.

aThe 9-m (80-ft) diam antenna station established by the DSN on
Ascension Island during 1965 to act in conjunction with the STDN
orbital support 9-m (80-It) diam antenna station was transferred
to the STDN in July 1968.
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To provide sufficient tracking capability to enable

returns of useful data from around the planets and from

the edge of the solar system, a 64-m (210-ft) diam antenna

subnet will be required. Two additional 64-m (210-ft)
diam antenna DSSs are under construction at Madrid and

Canberra and will operate in conjunction with DSS 14

to provide this capability. These stations are scheduled to

be operational by the middle of 1973.

B. Compatibility Test Facilities

In 1959, a mobile L-band compatibility test station

was established at Cape Kennedy to verify flight-space-

craft/DSN compatibility prior to the launch of the Ranger

and Mariner Venus 1962 spacecraft. Experience revealed

the need for a permanent facility at Cape Kennedy for

this function. An S-band compatibility test station with a

1.2-m (4-ft) diameter antenna became operational in 1965.

In addition to supporting the preflight compatibility tests,

this station monitors the spacecraft continuously during

the launch phase until it passes over the local horizon.

Spacecraft telecommunications compatibility in the

design and prototype development phases was formerly

verified by tests at the Goldstone DSCC. To provide a

more economical means for conducting such work and

because of the increasing use of multiple-mission telem-

etry and command equipment by the DSN, a Compati-

bility Test Area (CTA) was established at JPL in 1968.

In all essential characteristics, the configuration of this

facility is identical to that of the 26-m (85-ft) and 64-m

(210-ft) diameter antenna stations.

The JPL CTA is used during spacecraft system tests to

establish the compatibility with the DSN of the proof test

model and development models of spacecraft, and the

Cape Kennedy compatibility test station is used for final

flight spacecraft compatibility validation testing prior to
launch.

II. Ground Communications Facility

The GCF provides voice, high-speed data, wideband

data, and teletype communications between the Mission

Operations Center and the DSSs. In providing these

capabilities, the GCF uses the facilities of the worldwide

NASA Communications Network (NASCOM) 2 for all long

ZManaged and directed by the Goddard Space Flight Center.

distance circuits, except those between the Mission

Operations Center and the Goldstone DSCC. Communi-
cations between the Goldstone DSCC and the Mission

Operations Center are provided by a microwave link

directly leased by the DSN from a common carrier.

Early missions were supported by voice and teletype

circuits only, but increased data rates necessitated the

use of high-speed and wideband circuits for DSSs. Data

are transmitted to flight proiects via the GCF using

standard GCF/NASCOM formats. The DSN also sup-

ports remote mission operations centers using the GCF/
NASCOM interface.

III. Network Control System

The DSN Network Control System is comprised of

hardware, software, and operations personnel to provide

centralized, real-time control of the DSN and to monitor

and validate the network performance. These functions

are provided during all phases of DSN support to flight

projects. The Network Operations Control Area is located

in JPL Building 230, adjacent to the local Mission Opera-

tions Center. The NCS, in accomplishing the monitor and

control function does not alter, delay, or serially process

any inbound or outbound data between the flight project

and tracking stations. Hence NCS outages do not have a

direct impact on flight project support. Voice communi-

cations are maintained for operations control and co-

ordination between the DSN and flight projects, and for

minimization of the response time in locating and cor-

recting system failures.

The NCS function will ultimately be performed in data

processing equipment separate from flight project data

processing and specifically dedicated to the NCS func-

tion. During FY 1973, however, DSN operations control

and monitor data will be processed in the JPL 360/75

and in the 1108. In FY 1974 the NCS data processing

function will be partly phased over to an interim NCS

processor, and finally, in FY 1975, the dedicated NCS

data processing capability will be operational. The final

Network Data Processing Area will be located remote

from the Network Operations Control Area so as to pro-

vide a contingency operating location to minimize single

point of failure effects on the network control function.

A preliminary description of the NCS appears elsewhere
in this document.
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Table 1. Tracking and data acquisition stations of the DSN

Antenna

DSS serial Year of initial

DSCC Location DSS designation Diameter, Type of operation

m (ft ) mounting

Goldstone California Pioneer 11 26(85) Polar 1958

Echo 12 26 ( 85 ) Polar 1962

( Venus ) _ 18 26( 85 ) Az-E1 1962
Mars 14 64 (210) Az-E1 1966

-- Australia Woomera 41 26 ( 85 ) Polar 1960

Tidbinbilla Australia Weemala 42 26 ( 85 ) Polar 1965

(formerly

Tidbinbilla )

Ballima 43 64 ( 210 ) Az-E1 Under

( formerly construction

Booroomba)

-- South Africa Johannesburg 51 26 ( 85 ) Polar 1961

Madrid Spain Robledo 61 26 (85) Polar 1965

Cebreros 62 26 ( 85 ) Polar 1967

Robledo 68 64 (2 I0 ) Az-EI Under
construction

_A research-and-development facility used to demonstrate the feasibility of new equipment and methods to be integrated into

the operational network. Besides the 26-m (85-ft) diam Az-EI mounted antenna, DSS 13 has a 9-m (80-ft) diam Az-E1

mounted antenna that is used for interstation time correlation using lunar reflection techniques, for testing the design of new

equipment, and for support of ground-based radio science.
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Network Control System
J. R. Hall

DSN Systems Office

This article provides: (1) background material describing philosophy leading to

a Network Control System (NCS)[unction using data processing equipment

separate [rom that equipment used by [light projects, (2) key characteristics of

the NCS, (3) a listing of the Junctional requirements for each NCS subsystem,

(4) a generic subsystem data [low description, and (5) an overall NCS data flow

description.

In October of 1971 the Office of Space Sciences (OSS)

and Office of Tracking and Data Acquisition (OTDA)

reviewed the Planetary Mission Operations, Space Flight

Operations Facility (SFOF), and network interface with

the view to bringing the program control and budget

functions more into line with management responsibili-

ties. The intent is to develop an interface that would be

reasonably clear in order to simplify technical manage-

ment and to assure that budgeting requirements of the
two offices are well understood.

The OTDA assumed responsibility for the tracking sta-

tions, NASA Communications Network (NASCOM)/

Ground Communications Facility (GCF), and network

control and monitoring. These responsibilities include

(1) network scheduling, (2) network predicts, (3) network

performance monitoring, (4) network validation tests,

(5) provision of real-time data streams to Mission Opera-

tions, (6) acceptance of commands from Mission Op-

erations and transmission to stations and spacecraft,

(7) provision of a clean record to Mission Operations of

data streams for tracking, telemetry, and command, and

as required, (8) participation with Mission Operations in

mission simulations. The system is to be designed so that

OTDA and OSS functions reside in separate hardware to

provide for cleaner and more controllable interfaces.

Figure 1 depicts the flow between the DSN and the

flight project and the manner in which the NCS is

coupled into this flow. Inbound tracking and telemetry
data and outbound command and mission simulation data

are tapped off and sent to Network Control for valida-

tion and verification purposes. DSN monitor and control
data are communicated between Network Control and

JPL TECHNICAL REPORT 32-1526, VOL. Xl 5



DSN elements. Mission information for operations con-

trol and DSN status data are exchanged via voice be-

tween Network Control and Mission Control. JPL central

computers are utilized for non-operations-driven data

processing.

One of the major objectives of the Mark III DSN

design is to provide a multimission capability that pre-

sents a simple, fully standardized interface to using

projects via standard GCF/NASCOM formats. The NCS

plan maintains this objective in accomplishing the moni-

tor and control function. It does not alter, delay, or

serially process any inbound or outbound data between

the flight project and tracking stations. Hence NCS

outages should not have a direct impact on flight

project support. Voice communications will be main-

tained for operations control and coordination between

the DSN and flight projects and to minimize the response

time in locating and directing system failures. The devel-

opment schedule provides for a full-scale NCS capability

by July 1, 1974.

An interim capability will be available by July 1, 1973.

The interim capability will consist of flight project infor-

mation on NCS displays for DSN tracking, telemetry, and

command data validation and will incorporate a separate

NCS processor for data validation and operations control

purposes. This interim configuration requires that non-

JPL flight projects maintain a tracking, telemetry, and

command data processing capability in the JPL 360/75 if

the network performance is to be suitably validated. The

capability for July 1972 uses most of the current JPL

360/75 DSN capability.

The key functions of the DSN Control System provide
the following:

(1) Real-time validation of network configuration and

performance.

(2) No alteration or delay of inbound or outbound data

by the validation technique. Outbound lines are

shared with flight projects.

(3) Near-real-time relaying of DSN status to Mission
Control.

(4) Close liaison with Mission Operations to minimize
downtime and to locate and correct network

failures.

(5) Network control and Mission Operations functions

performed in separate hardware.

(6) A GCF Log which provides fill data, as requested

by flight projects.

(7) A capability for network test and training and for

participation in mission simulations.

(8) A DSN data base for network operations and per-

formance analyses.

(9) Support for remote as well as local mission control

centers.

The NCS comprises seven subsystems as follows: Track-

ing, Telemetry, Command, Monitor and Control, Display,

Support, and Test and Training. The NCS data process-

ing requirements for these subsystems are as follows:

Tracking

(1) Generate predictions from project-supplied state
vector or from radio metric data.

(2) Control and verify system configuration and data
mode.

(3) Generate tracking standards and limits.

(4) Compare radio metric data with predictions.

(5) Detect and report status of the DSN Tracking

System.

(6) Transmit alarms to Monitor and Control System

and DSN Operations Control Area.

(7) Generate System Performance Record for track-

ing.

Telemetry

(1) Control and verify selected system configuration
and data mode.

(2) Generate telemetry standards and limits.

(3) Decommutate data needed for system perform-

ance analysis.

(4) Detect and report status of the DSN Telemetry

System.

(5) Transmit alarms to Monitor and Control System

and DSN Operations Control Area.

(6) Generate received signal level predictions.

(7) Generate System Performance Record for telem-

etry.

6 JPL TECHNICAL REPORT 32-1526, VOL. Xl



Command

(1) Control and verify selected system configuration
and data mode.

(2) Generate command standards and limits.

(3) Detect and report status of DSN Command Sys-
tem.

(4) Transmit alarms to Monitor and Control System

and DSN Operations Control Area.

(5) Generate System Performance Record for com-
mand.

(6) Generate test commands.

Monitor and Control

(1) Generate monitor standards and limits.

(2) Receive Deep Space Information Facility (DSIF),

NCS, and Ground Communications Facility

(GCF) monitor data.

(3) Receive Telemetry, Tracking, and Command

System alarms and selected telemetry data.

(4) Detect and report status of the DSN.

(5) Transmit display data to DSN Operations Con-
trol Area.

(6) Generate subsystem-common standards and limits

parameter tables.

(7) Monitor NCS configuration and performance.

(8) Generate Network Performance Record.

(9) Generate DSN operational schedules.

(10) Generate DSN operational sequence of events

and historic log.

(11) Process discrepancy report data.

(12) Process ODC traceability reporting system (TRS)
data.

Display

(1) Provide man/machine interface in DSN Opera-
tions Control Area for control of real-time moni-

tors (RTMs).

(2) Format and display received RTM data.

(3) Provide remote terminal for Network Support

Controller (NSC) support subsystem computer.

JPL TECHNICAL REPORT 32-1526, VOL. Xl

(4)

(5)

(6)

Format and display received NSC support sub-
system data.

Provide consoles, displays, and working area for

operations personnel.

Provide a computer-driven network status dis-

play board.

Support

(1) Provide network support controller (NSC)

processor, including operating system for all

non-real-time programs.

(2) Load and start programs in RTMs, NSC, and

GCF; provide checkpoint recovery of NSC.

(3) Provide utility print routines for demand dumps

of any data being switched and routed or any

data on NCS files, also non-real-time (NRT)

de-log dumps of any tape.

(4) Manage disk-to-disk transfers to/from RTMs.

(5) Provide system-common standards and limits file

extraction and high-speed data (HSD) output.

(6) Provide NCS development support - RTM emu-

lator, RTM compiler, NSC compiler.

(7) Provide system-common GCF log replay data ex-

tractions (for project fill data only).

(8) Provide test HSD block (for de-bug).

(9) Receive NRT program input data in data driven
mode.

(10) Encode free-form text for HSD transmission.

Test and Training

(1) Generate and control simulated data to support

development, test, training, and fault isolation.

(a) DSIF data streams to exercise GCF and NCS

subsystems.

(b) Spacecraft data patterns to exercise DSIF

subsystems.

(2) Participate in mission simulation with project.

(a) Control data flow within DSN to support
mission test and training simulation.
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(b) Generate simulated DSN data to supplement

project simulation data.

A generic subsystem data flow chart is shown in Fig. 2.

The basic structures of the tracking, telemetry, command,

and monitor and control subsystems comprise real-time
and non-real-time functions. The real-time function will

be accomplished through the use of minicomputer-

based real-time monitors. System configuration verifica-

tion and system performance validation will be accom-

plished by comparing incoming data with established

standards and limits. System performance records will be

accumulated in real-time for analysis, data recall, and

historical purposes. Alarm diagnosis and system status

and display data will be available for real-time opera-

tions control purposes, An initialization and recovery

file is maintained for initial setup and for checkpoint

recovery.

The non-real-time functions will be accommodated in

a network support controller. This processor will be

utilized to establish standards and limits, to generate

predicts, to extract system performance data, to analyze

data, to extract data for standards and limits transmission

to the DSIF and GCF, and to extract project fill data.

Figure 3 depicts the Network Control System data and

message flow configuration, which incorporates the

following:

(1) A DSN Operations Control Area located in the

Mission Operations Center.

(2) Network data system real-time monitors located in
the Network Data Processing Area. Processed real-

time monitor data are displayed in and controlled

from the DSN Operations Control Area.

(3) A network support controller in the Network Data

Processing Area which is used for coordination of

the real-time monitors and for network data pro-

cessing. Data are output to the DSN Operations

Control Area and to the Deep Space Stations.

(4) A test and training processor and operations func-

tion located in the Network Data Processing Area.

(5) A GCF terminal in Building 230 to interface with

the DSN Operations Control Area and to provide

the GCF log. A second GCF terminal is provided

adjacent to the Network Data Processing Area.

A more detailed description of the Network Control

System will be provided in a later issue of this document.
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Fig. 1. DSN Control System key functional characteristics
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Fig. 3. Network Control System data and message flow requirements
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Pioneers 6-9 Mission Support
A. J. Siegmeth

Mission Support Office

During July and August 1972, the DSN supported a radial experiment requiring

signals of Pioneers 9 and 10 simultaneously. The Pioneer principal investigators

plan to establish the distribution of fields and particle gradients. The DSN

demonstrated a Mark III-system-type station software which can transmit Pioneers

6, 7, 8, and 9 telemetry data by high-speed data lines.

During this reporting period, the DSN supported a

radial experiment of Pioneers 9 and 10. On August 6,

1972, the distance between the Sun and Pioneer 9 was

approximately 120 million km, and Pioneer 10 was already

speeding away from the Sun, having a 240-million-km

Sun range. The DSN started to furnish Pioneer 9 support

in mid-July 1972, and an average of seven tracking

passes have been provided weekly. During the same

time, Pioneer 10 support was continuous. The Pioneer 9

spacecraft was tracked most of the time by DSS 11 at

Goldstone and DSS 51 in South Africa. Some tracking

passes were provided by DSS 41 in Woomera, Australia.

The support of the Pioneer 9 and 10 radial experiment

was a continuation of the DSN's effort to make possible

simultaneous observations by two spacecraft separated

by a large heliocentric radial distance. The Pioneer prin-

cipal investigators plan to determine the parameters of

the solar wind and magnetic field in situations where the

two spacecraft under surveillance are aligned on the

same so]ar radial. The significance of this experiment was

also magnified by the fact that the sun was quite active

during the radial configuration, and therefore the inter-

planetary medium was more complex. More background

information on the Pioneer radial and spiral opportunities

was given in Ref. 1.

The Pioneer 6 spacecraft is still within the threshold

range of the 26-m antenna stations. The DSN stations in

Spain, South Africa, and Australia tracked an average of

five passes per week for the Pioneer 6 mission. Pioneers 7

and 8 can be tracked only from the 64-m antenna station

at Goldstone, California. Because of the heavy loading of

this single advanced facility, Pioneers 7 and 8 were

tracked for only a few passes.

12 JPL TECHNICAL REPORT 32-1526, VOL. Xl



The DSN continued to improve the network's effective-

ness by attempting to support all unmanned missions in

the DSN Mark III-type configuration. The engineers of

DSS 62 in Madrid have recently developed a new station

software which has already been demonstrated, making

possible the support of Pioneer 6, 7, 8, and 9 missions in

the same standard, multimission-type configuration as

designed for the current and future unmanned planetary

and interplanetary missions. This software has a capa-

bility to use the standard subcarrier demodulators, symbol

synchronizers, and sequential decoders for the demodula-

tion of the Pioneer signals. The on-site telemetry and

command processor generates high-speed data blocks

very similar to the ones used by Pioneer 10, records a

digital magnetic tape called the Original Data Record,

and also generates a teletype output which can transmit

Pioneer 6, 7, 8, and 9 telemetry frames and a short status

monitoring frame. The DSN entered negotiations with the

Pioneer Project to make possible operations on the second-

generation Pioneers with this demonstrated software.

The JPL Mission Control and Computing Center

started engineering planning for a proposed configuration

making the demonstrated station software compatible

with a flight project operational capability. After such a

capability is implemented, the DSN plans to deactivate

the Ground Operations Equipment (GOE). This equip-
ment has been in service since the Pioneer 6 launch in

December 1965. GOEs are still operational at DSSs 12

and 14 at Goldstone, California, and at DSS 51 in South

Africa. The demonstrated on-site software subsystem will

improve telemetry threshold support capabilities by ap-

proximately 1 dB using the latest state-of-the-art de-

modulation equipment.

Reference

1. Siegmeth, A. J., "Pioneer Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. X, pp. 10-13. Jet Propulsion

Laboratory, Pasadena, Calif., Aug. 15, 1972.
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Pioneers 10 and G Mission Support

A. J. Siegmeth
Mission Support Office

The DSN has already completed 6 months of continuous telemetry data acqui-

sition, command, and radio metric tracking support [or Pioneer 10, which was

launched on March 4, 1972. The Pioneer 10 spacecra[t, on the way to the giant

planet Jupiter, crossed the orbit of Mars during the first part of May and entered

the asteroid belt in the middle of ]uly 1972. A summary o_ extended mission

support capabilities is presented.

The 250-kg Pioneer 10 spacecraft is the first man-made

object to enter into the 210-million-km-wide asteroid belt

region, where huge chunks of solid debris hurtle through

space at tremendous speed orbiting the sun. Astronomers

estimate that at least 50,000 of these asteroids measure

1.5 km or more in diameter. Ceres, the largest, is 900 km

across. There is no way of knowing how many millions of

small asteroids are circling the sun ranging in size from

1 km down to pebbles, sand, and meteorites. Even a

relatively small asteroid could damage Pioneer 10

seriously. Such a disaster could become known on Earth
only after the spacecraft downlink signals were lost.

The distribution of large asteroids in the asteroid belt

is sparse enough to allow safe passage; it is the concen-
trations and sizes of asteroid fragments and dust particles

traveling approximately 15 km/s relative to the spacecraft

which cause concern. (A bullet leaving the muzzle of a

military rifle travels approximately I km/s.)

Since the asteroids are scattered far apart in the vast-

ness of space, it is still a high probability that Pioneer 10

will conquer the hostile environment of the solar system

and leave the asteroid belt safely in January 1973 to

continue the voyage towards its next objective, Jupiter.

Pioneer 10 will arrive at the largest planet of the solar

system on December 4, 1973. The DSN has continuously

collected the Pioneer 10 downlink telemetry signal, using

almost all 26-m antenna stations of the network. Every

operational measure was and is taken to monitor eon-

tinuously the performance of the telecommunications

downlink to assure the detection of any deviations from

14 JPL TECHNICAL REPORT 32-1526, VOL. Xl



nominal values affecting this link by any unforeseen

collision processes. The DSN has also provided one track-

ing pass per week from the 64-m-antenna station at

Goldstone to enhance telemetry performance and obtain

precision two-way doppler-type radio metric information.

The telecommunications downlink operated during

high elevation angles of the station antennas at 1024 bps.

During the entrance and exit phases of the tracking

passes the Project commanded the spacecraft telemetry

rate to 512 bps to assure an errorless downlink telemetry

stream obtained at the output of the sequential decoder

from the on-site equipment. During the DSS 14 passes

at Goldstone, the Project operated Pioneer 10 at a telem-

etry bit rate of 2048 bps.

To probe the hazards of space flight, Pioneer 10 is

carrying a meteoroid detector. Dr. W. H. Kenard and

four co-investigators at the Langley Research Center are

concerned with encounters between the spacecraft and

very small bits of matter. This experiment has panels of

pressurized ceils mounted from the back surface of the

Pioneer 10 high-gain antenna, and penetrations of the

cells are counted. The rate at which pressure is lost from

a cell indicates the size of the hole made; and thus the

mass and incident energy of the particle responsible will

be learned. By combining such findings with trajectory
data, the researchers will establish the statistical distri-

bution modes of the spacial density of small meteoroids

having masses of 10 -9 g or more.

By August 9, the Pioneer 10 meteoroid detector regis-

tered a total of 63 hits. The first penetration was observed

one day after Pioneer 10 launch, and one to seven hits

were experienced during each 10 days of flight. As the
spacecraft crossed the Mars orbit trace, no hits were

observed for approximately eight days.

Telemetry information obtained from the asteroid

meteoroid detector (also called Sisyphus) is under study.

This instrument can detect particles ranging upward in

mass from 10-0 g, and it can detect asteroids and

meteoroids by the solar light that they reflect and scatter.

Four independent telescopic subsystems provide four

overlapping fields of view, and the light signatures are

detected by photomultiplier tubes. The ranges and veloci-

ties of optically observed particles can be found by tim-

ing the entries and departures of the reflections in those

four fields of view. The principal investigator of this
detector is Dr. R. K. Soberman. Besides data obtained

from the described asteroid and meteoroid detectors, the

continuous collection of Pioneer 10 telemetry data by

the DSN also provided to the other nine experimenters

new information on the environment of the solar system

never before probed by any spacecraft.

Preceding the official change of the Pioneer Project/

DSN interface in July 1972, the DSN delivered the 360/75

Model 6 software in June. This software included an

automatic command transmission capability from the

Remote Information Center of the Pioneer Project located

at Ames Research Center (ARC), Moffett Field, Cali-

fornia. Using this command input terminal, the Project
started to send most of the automatic commands from

ARC to the Pioneer 10 spacecraft via the Central Process-

ing System located at the Mission Control and Computing

Center (MCCC) at JPL to the Deep Space Stations. DSN

has also delivered in June a capability to merge data

records from the DSN-generated System Data Records

_,_ft Original r_ r_.... d _1_.._.._i ................. ...... v'"y _'"'-" "v ¢_. This rnei--geu-.1

Master Data Record capability is compatible with the

Pioneer off-line system generating Experimenter Data
Records.

Besides an automatic commanding capability provided

to the flight project, the DSN has also tested emergency

command transmission equipment and trained personnel.

If for any reason the high speed data lines for inter-

connecting computers should fail, making the immediate

transmission of commands to the spacecraft from the

Pioneer Mission Control Area not possible, the DSN

provides this emergency command capability. In this

configuration the Mission Controller provides verbal

instructions via voice line to the network Operation
Control Chief and Station Controller. This voice com-

mand is entered at the stations by the telemetry and

command processor (TCP) operator in the on-site com-

puter via a keyboard device. Fail-safe voice command

monitoring and verification techniques are also used to

assure the timely transmission of commands necessary

during possible urgent corrective actions. The DSN has

also shortened the switchover time of telemetry bit rate

and format changes at the stations to 1 min. This pro-

cedure makes possible speedy changes in the operational

configuration with a minimum amount of loss of telem-

etry data.

The DSN has also completed the modification of

numerous station voltage-controlled oscillators and dop-

pler extractors necessary to make the stations compatible

with Pioneer 10 doppler swings. The implementation of

the 64-m antenna stations in Australia and Spain is on

schedule. The DSN plans to make them available for

Pioneer 10 support by July 1, 1973.
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The performance of the real-time network support

provided to the flight project was satisfactory. The
Pioneer Mission Control Team used the DSN-furnished

real-time data to monitor and analyze spacecraft and

instrumentation health and to make spacecraft configura-

tion adjustments to assure near optimum data return. The

Project also calibrated the flight instruments at regular

intervals and adapted their performance characteristics
to the environment to be measured. Most of the time the

Project controlled the mission from ARC using an XDS

Sigma 5 real-time processor. Parallel with this capability,

the Central Processing System of the MCCC was also

operating and providing processed telemetry and com-

mand capability to a Pioneer team operating from the
Pioneer MCCC area.

The production of continuous data records generated

after the real-time operation was constrained by charac-

teristics of the high-speed data lines interconnecting the

on-site TCP computers with the Central Processing Sys-

tem located at JPL's Mission Control and Computer

Center. The continuity of the System Data Records file

established in real-time in the Central Processing System

was constrained by a large number of data gaps. These

gaps were caused mostly by the burst noises appearing

in long high-speed data lines and by characteristics of

the software of the computer systems connecting the

station with the Mission Control and Computer Center.

The DSN attempted to recover most of the larger gaps by

recalling specific contents of the on-site Original Data

Records. Because of resource, manpower, and budgetary

constraints, it was not possible to fill all data gaps of the

real-time System Data Records, thus causing a certain

number of remaining gaps in the Master Data Records

generated for the Pioneer Project by the Mission Control

and Computing Center. The extent of small data gaps and

the statistical distribution of the DSN-generated System

Data Records is under study, and it is expected that the

system performance can be improved to minimize

the constraints affecting the full data return from some

of the spacecraft instruments.

In August 1972, the Pioneer 10 medium-gain antenna
reached threshold with the 64-m antenna station in

Goldstone. Since that time, the Project has been using

the spacecraft high-gain antenna exclusively as the trans-
mission terminal of the downlink telecommunication link.

The Project performed numerous DSN-supported auto-

matic CONSCAN spin axis torqueing maneuvers and

pointed the spacecraft high-gain antenna back toward
Earth whenever the relative drift between the Earth and

spacecraft location necessitated such a maneuver.

Figure 1 displays an estimate of the Pioneer 10 and G
telecommunications link performance during the next

10 years. The Pioneer 10 geocentric range is shown from

launch until the end of 1979. The geocentric range is

displayed in astronomical units (1 au = 149.5 million km).

The corresponding round-trip light time in minutes is

also shown adjacent to the geocentric range scale.

The 26-m subnet will reach spacecraft telemetry

threshold at a rate of 64 bps in 1974. In 1976, the space-

craft will fly at Saturn range, and a downlink opera-

tion of 256 bps can be provided using the 64-m subnet.

Assuming that the radioisotope thermoelectric generators

of the spacecraft are still delivering sufficient power to

operate the spacecraft telecommunications equipment,

Pioneer 10 can be supported with the 64-m antenna

stations up to 1979, which is equivalent to a geocentric

range of over 19 AU operating at 65 bps. It should be
mentioned that if the same stations would use the latest

state-of-the-art DSN block receivers with a 3-Hz carrier

tracking bandwidth, the spacecraft could be supported

by the ground facilities up to 1986, reaching a 30-AU

range. The telemetry bit rate would be 16 bps at this
time. Under similar circumstances the command threshold

using the spacecraft medium-gain antenna and a 20-kW

uplink power capability will be reached approximately in

1978 at a range of 16 AU. This range could be expanded

to over 70 AU in 1997 if a 400-kW uplink was used. This

capability would be somewhat academic in nature be-

cause the predicted half-life of the radioisotope fuel is

10 years.

If one assumes that the geocentric range of Pioneer G

vs time is similar to the range given for Pioneer 10, the

corresponding thresholds can also be obtained from

Fig. 1 using the time scale provided for Pioneer G.

Planning for the testing and training necessary for the

Pioneer G launch operations is on schedule. A maximum

of 20 launch days appears feasible for this second

Jupiter-bound mission. A launch window will open on

April 4 and close on April 23, 1973. The daily launch

windows will be targeted for a minimum of 30 min.

The Pioneer G will be a direct-ascent type. The de-

sired direct trajectory will be accomplished by an

Atlas/Centaur burn followed by a TE 364-4 solid-

propellant third-stage engine. The launch azimuth will be

kept constant throughout the launch opportunity at

108 deg. Beginning in the Atlas sustainer phase (147 s)

the trajectories are yawed by guidance as required to

obtain the necessary final target vector. The declination
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angle of the target vector will range from -32.5 to

- 39.5 deg.

Because of the large negative declination angles,

Pioneer G will fly farther to the south than Pioneer 10,

and thus the Deep Space Stations located in the southern

hemisphere will have long view periods, with a view

disadvantage to the northern hemisphere stations. Be-

cause of this unfavorable low declination angle, there

will be a direct view gap between the initial acquisition

station in Johannesburg and Goldstone. To cover this

gap the STDN station at Ascension will be used, not only

during launch day but for several days after launch until

relative improvements of the declination angle will im-

prove the length of view periods at the South African
and Goldstone sites.

Documents covering the Pioneer G near-Earth-phase

characteristics, station view periods, and the expected

coverage capabilities have already been published. Addi-
tional information on Pioneer 10 and G is contained in

Refs. 1-9.

References

.

.

.

.

.

.

.

.

.

Siegmeth, A. J., "Pioneer Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. II, pp. 6-17. Jet Propulsion

Laboratory, Pasadena, Calif., Apr. 15, 1971.

Siegmeth, A. J., "Pioneer Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. 1II, pp. 7-19. Jet Propulsion
Laboratory, Pasadena, Calif., June 15, 1971.

Siegmeth, A. J., "Pioneer Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. IV, pp. 13-21. Jet Propulsion
Laboratory, Pasadena, Calif., Aug. 15, 1971.

Siegmeth, A. ]., "Pioneer Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. V, pp. 4-16. Jet Propulsion

Laboratory, Pasadena, Calif., Oct. 15, 1971.

Siegrneth, A. J., "Pioneer Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. V1, pp. 13-24. Jet Propulsion

Laboratory, Pasadena, Calif., Dec. 15, 1971.

Siegmeth, A. J., "Pioneer Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. VII, pp. 5-16. Jet Propulsion

Laboratory, Pasadena, Calif., Feb. 15, 1972.

Siegmeth, A. J., "Pioneer Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. VIII, pp. 8-19. Jet Propulsion

Laboratory, Pasadena, Calif., Apr. 15, 1972.

Siegmeth, A. J., "Pioneer Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. IX, pp. 18-32. Jet Propulsion

Laboratory, Pasadena, Calif., June 15, 1972.

Siegmeth, A. J., "Pioneer 6-9 Mission Support," in The Deep Space Network

Progress Report, Technical Report 32-1526, Vol. X, pp. 10-13. Jet Propulsion

Laboratory, Pasadena, Calif., Aug. 15, 1972.

JPL TECHNICAL REPORT 32-1526, VOL. Xl 17



c
E

i--

O
..J
a_

r_
Z

o

3OO

250

200

150

IOO

5O

Z

u

i.-
Z
uJ
u

o
O

2O

1B

16

14

12

10

8

'_ WITH BLOCK IV/3 Hz RECEIVER 32/16 bps, NEPTUNE > 30 au, 1986
DSN-BLOCK 1ll/12 Hz RECEIVER 64-bps THRESHOLD, 18 au, 1979

_COMMAND THRESHOLD: MEDIUM GAIN SPACECRAFT ANTENNA WITH kW: 16aul
20

400 kW: 70 au,

'MARS

26-m SUBNET/64 bps

64

i28

256

SPACECRAFT: HIGH-GAIN ANTENNA WITH 1-de
POINTING ERROR

EARTH

1024

I
j 2048

J TELEMETRY BIT

I RATE, s

_j_' JUPITER

DSN:

'_ SATURN

1973 l 1974 l 1975 l 1976

1974 J 1975 l 1976 i 1977

-165

LAUNCHES

-155

64-m SUBNET WITH BLOCK Ill RECEIVERS,
SNT = 24 K, SEQUENTIALLY DECODED

DATA, NO DELETIONS (.UNDER OPTIMUM -150
CONDITIONS LOWER THRESHOLD BY I .8 clB)

I
I

URANUS

l 1977 l 1978 l 1979 I PIONEER 10

l 1978 l 1979 l 1980 l PIONEER G l

Fig, 1. Pioneers 10 and G telecommunications link performance estimate

18 JPL TECHNICALREPORT32-1526, VOL. Xl



Viking Mission Support
D. J. Mudgway

Mission Support Office

The DSN support for Viking continues to move from the completion of the

planning and negotiating phase into the implementation phase in accordance with

established schedules. Most documents reflecting this activity have been com-

pleted, and a maior Proiect review of the ground data system design for Viking

has been supported. A problem associated with the Viking requirement for simul-

taneous dual carrier operation is being investigated.

I. Introduction

The basic structure of DSN support for Viking was

described in a previous article (Ref. 1). Over the past two

months, activity has continued in all areas with the em-

phasis beginning to change from planning and negotiating

towards design and implementation. At this stage, pro-

gress is best indicated by the completion and signoff of

various documents reflecting agreements and decisions,
and these are described below.

In one area, a significant technical problem has

emerged and is being investigated at this time. Project-

sponsored reviews of activity have been supported, with

major effect being given to the Launch and Flight Opera-

tions Preliminary Design Review.

II. Configuration

The DSN configuration for Viking has now been de-
fined in functional terms in Ref. 2 for each of the DSN

Systems. The configuration of the DSN Telemetry System

for Viking is given in Fig. 1. Subsequent issues of this

report will describe the remaining systems -- Command,

Tracking, and Test and Training.
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III. Interfaces

The RF interfaces between the Orbiter and DSN and

between the Lander and DSN have now been defined and

passed through final review in preparation for approval

and release. In addition to the customary RF interface

parameters and telecommunications link performance

curves, these interface documents contain all the telem-

etry and command data formats and associated material.
This is to ensure that the DSN software residing in the

telemetry and command processors is properly accounted

for in defining the overall flight/ground compatibility
criteria.

The remaining DSN interface -- with the Viking

Mission Control and Computing Center -- is being devel-

oped to cover all data flow between the DSN and Viking

Mission Control and Computing Center (VMCCC) and is
in draft form at the present time.

IV. Schedules

Major milestones on the Tracking Data System (TDS)/
Project schedules have been met with the release of the

DSN Support Plan for Viking and the DSN support of

the Flight Operations System Preliminary Design Review.

As DSN support moves towards the implementation

phase, the Level 5 and Level 6 schedules contained in
the DSN Support Plan and the Facilities Preparation Plan

will be used to report progress in these areas.

V. Problem Areas

The Viking requirement for simultaneous dual carrier

operation led to a configuration at the 64-m DSSs involv-

ing excitation of a single klystron power amplifier by two

carriers. To keep the intermodulation products at an

acceptable level, it was proposed to run each dual carrier

at a level about 10 dB below the maximum single carrier

rating for each klystron.

In the course of testing this configuration over recent

months, other effects related to carrier mixing on the

antenna surface with consequent interference in the
downlink have been noted. A substantial effort to investi-

gate these effects has been mounted using DSS 13 as a

"test bed." The objective of these tests is to obtain an

understanding of the processes by which these undesired

signals are generated and to investigate means by which

they may be eliminated. The background to this work

and present status are described in another article in this

issue (D. A. Bathker and D. W. Brown, Dual Carrier

Preparations Jor Viking).
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Pioneer Venus Mission Support

A. J. Siegmeth
Mission Support Office

A summary of the history of the Pioneer Venus missions is presented. The

characteristics o[ the 1976/77 probe missions are given. The Pioneer Project

investigates a preliminary plan to develop a cooperative agreement on the Venus

Orbiter mission with the European Space Research Organization.

A brief history of the Pioneer Venus project is given in

Fig. 1. (See also Refs. 1-9). As reported previously, prior

to 1972, Goddard Space Flight Center was involved in

the study of missions, called Planetary Explorers, which

would probe the Venusian atmosphere. The initial study

began during the first quarter of 1968. The Phase A study

was completed during the beginning of 1971. During the

latter part of the same year the program was transferred
to Ames Research Center and is now called Pioneer

Venus. After the selection of contractors for a Phase B

study for the duration of nine months, the execution phase

of Pioneer Venus will start during the second quarter of
1973.

Four Pioneer Venus missions are on the planning board.

Two probe missions will be launched, in December 1976

and January 1977. The universal bus of this mission will

weigh 150 kg, the large landing probe 170 kg, and the

three small probes a total of 70 kg, thus comprising a

total spacecraft weight of 390 kg. The flight time will be

325 days, and the probes will be separated 10 to 20 days

before entering the Venusian atmosphere. The bus will

also enter the Venusian atmosphere at a shallow entry

angle and will transmit data until burn. The bus science

package will weigh 10 kg, and the telemetry bit rate is

estimated at 300 bps. The large probe will have a descent

time of 90 rain, the small probe a descent time of 60 min.

The expected bit rate of the large probe will be 80 bps up

to 52 km altitude. The 40-bps rate will be used from

52 km until at the surface of the planet. The small probes

will have a bit rate of i bps.

The Pioneer orbiter mission will be flown during 1978

and a follow-on probe mission, which is the fourth of this

series, will be flying towards Venus in 1980.
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The European Space Research Organization (ESRO)

is also involved in a study of a Venus orbiter mission.

Recommendations were made for NASA/ESRO coopera-

tion. ESRO is currently involved in a preliminary feasi-

bility study of a 1978 Venus orbiter. A request for a

proposal on this study was coordinated with Ames Re-

search Center. The study of a preliminary plan on the

NASA/ESRO interface with the Pioneer Project has

started. This plan assumes that ESRO would be responsi-

ble for integration of the experiments into a NASA-

furnished bus. NASA would support the launch, mission

operations, and tracking and data acquisition,
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Radio Science Support
K. W. Linnes

Mission Support Office

Since 1967, radio scientists have used the Deep Space Network 26- and 64-m

antenna stations to investigate pulsars, to study the effect of solar corona on

radio signals, and to observe radio emissions from X-ray sources. More recently,

very-long-baseline interferometry (VLBI) techniques have been used for high-

resolution studies of quasars. During the reporting period, VLBI observations

were made of quasars and pulsars. Support was also provided by the 64-m

antenna for the measurement of cosmic background noise and weak radio

sources to search for interstellar molecules and to observe radiation from Jupiter.

I. Introduction

The 26- and 64-m antenna stations of the DSN have

been used for several years to support radio science ex-

periments. NASA, JPL, and university scientists have used

key DSN facilities whose particular and unique capabili-

ties were required for the performance of the experi-
ments. In order to formalize the method of selecting

experiments and experimenters, a Radio Astronomy Ex-

periment Selection (RAES) Panel was formed in 1969.

Notice of availability of these facilities was placed in

professional journals to inform the scientific community

that they were available for limited use by qualified

radio scientists (Ref. 1). No charge is made for use of

the standard DSN facilities and equipment; special

equipment, however, must be provided by the experi-

menters. A summary of all experiments conducted

through June 1972 is reported in Refs. 2 through 7.

II. Radio Science Operations

In July and August, radio astronomy observations con-

ducted under the auspices of the RAES Panel used ap-

proximately 97 hours on the 64-m-diameter antenna at

Goldstone (DSS 14). The experiments supported are
shown in Table 1. Most of the time was devoted to three

24-h observations of quasars and galaxies, under what is

called, for convenience, the "quasar patrol." As described

in Ref. 7, the purpose of this activity is to conduct a

regularly scheduled set of observations for the purpose

of detecting changes in structure and flux output of

quasars and galaxies as well as searching for new sources.

The proposal was formally approved by the RAES Panel

during this reporting period. The various teams of investi-

gators are shown in Table 2. It is the practice to schedule

one such 24-h observation each month on a day that does

not interfere with critical spacecraft activities and which
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is also compatible with the schedule of the MIT Haystack
37-m antenna and/or the 42-m antenna of the National

Radio Astronomy Observatory (NRAO). A second day
was scheduled in late August in lieu of one in September.

Mariner 9, orbiting Mars, will be at opposition in Sep-

tember, and the need is to track the spacecraft in support

of a relativity experiment.

The other radio astronomy experiments in Table 1

were supported with several 8-h observations and are

now completed.

As shown in Table 1, support was given to Radio

Science programs sponsored by the Office of Space Sci-

ence (OSS) as well as to radio science-related support of

flight project requirements. The planetary radio astron-

omy observations of Jupiter and Uranus made use of the

DSN-developed K-band (14 GHz) equipment. This equip-

ment, consisting of antenna feed, microwave components,

maser, and receiver, and also the noise-adding radiometer,

is also used for searching for interstellar microwave lines.

The program on Earth dynamics sponsored by the

Office of Applications (OA) was supported with a short

baseline interferometry observation at Goldstone. A base-
line between the 64-m antenna at the Mars site and the

26-m antenna at the Echo site was used to check out

newly acquired NRAO Mark II very long baseline inter-

ferometry (VLBI) digital recording terminals.

Two observations were made that are radio science-

related DSN developments. They were undertaken as part

of the weak signal detection task. One was the attempt to

detect the Jupiter satellite Callisto. The other was the

attempt to detect the asteroid Toro. Data from these

observations are being processed and analyzed.

III. Radio Astronomy Experiment Selection
Panel Activities

The RAES Panel disapproved one proposal in the

July-August period and approved the "quasar patrol"

(see Table 2).
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Table 1. Radio science experiments involving 64- and 26-m-diameter antenna facilities

Experiment Purpose Experimenter DSN facility Date

RAES Panel experiments

Small-scale variations To search for small-scale R. Carpenter (Calif. State DSS 14

in cosmic background spatial variations in the 2.7 K College of Los Angeles)

radiation cosmic background radiation S. Gulkis ( JPL )

of 8.5 cm T. Sato (JPL)

Jan. 10, 11, 1972

Feb. 11, 12, 22, 1972

Mar. 14, 25, 1972

May 8, 28, 1972

July 14, 1972

Weak radio source To measure the "confusion D.L. Jauncey (Cornell DSS 14

observations distribution" of weak radio University )

sources at 2.3 GHz M.J. Yerbury ( Cornell

University)

J. J. Condon (Cornell

University)

D. J. Spitzmesser (JPL)

June 5, 12, 1972

July 5, 18, 1972

Quasar structure by To monitor time variations T. Clark (GSFC) DSS 14 (and

X-band VLBI and fine structure and R. Goldstein (JPL) MIT Haystack

"quasar patrol" apparent position of H. Hinteregger ( MIT ) antenna )

quasars C. Knight (MIT)

G. Marandino (University

of Maryland)

A. Rogers (MIT Haystack

Observatory )

I. Shapiro ( MIT )

D. J. Spitzmesser (JPL)

A. Whitney ( MIT )

June 9, 19, 1971

Sept. 19, 1971

Oct. 2-4, 10, 17, 1971

Jan. 4, 1972

Feb. 18, 1972

Mar. 10, 1972

May 9, 1972

July 3, 1972

Aug. 29, 1972

X-band VLBI To study the structure of J. Broderick (NRAO) DSS 14 ( 64-m

"quasar patrol" extra galactic sources with B. Clark ( NRAO ) antenna at

improved resolution K. Kellermann ( NRAO ) Goldstone ) ( and

D. Jauncey (Cornell MIT Haystack

University) antenna )

M. Cohen (Caltech)

D. Shaffer (Caltech)

Feb. 1971

Nov. 2, 1971

Feb. 5, 1972

Mar. 4, 1972

Apr. 24, 1972

May 20, 1972

June 6, 1972

Aug. 8, 1972

OSS Experiments

S. Gulkis (JPL) DSS 14

T. Sato (JPL)

B. Zuckerman (Univ. of

Maryland )

D. Cesarsky (Caltech)

J. Greenstein (Caltech)

Interstellar microwave

low-noise spectroscopy

To search for interstellar

molecules at 14 GHz
Apr. 2,10, 18,1972

May 2,6, 14, 17,1972

June 4, 19, 1972

Aug. 5, 1972

Planetary radio

astronomy

To study radio emissions of

Uranus and Jupiter at

14 GHz

S. Gulkis (JPL)

B. Gary (JPL)

M. Klein (JPL)

M. Jansen (JPL Resident

Research Associate )

E. Olsen (JPL Resident

Research Associate)

P. Rosenkranz (JPL Resi-

dent Research Associate)

DSS 14 Apr. 29,30,1972

July 14,1972

Aug. 3,1972
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Table1(contd)

Experiment Purpose Experimenter DSN facility Date

OA Experiment

Earth dynamics VLBI To demonstrate the NRAO P. MacDoran (JPL) DSS 14

Mark II digital recording J. Fanselow (JPL) DSS 12

terminal by measuring the J. Thomas (JPL)

baseline between DSS 14 J. Williams ( JPL )
and 12 at Goldstone

Aug. 15, 1972

Table 2. Recently approved radio astronomy experiments

Title Purpose Experimenters Facilities required

"Quasar patrol" To make detailed measurements

on radio galaxies and quasars at

2.8, 7.8, and 15.6 GHz; to search

for weak compact sources in the

nuclei of extended radio galaxies

and quasars; to monitor time
variations in fine structure and

apparent positions of quasars

Croup A

D. S. Robertson, WRE

A, ]. Legg, WRE

]. Gubbay, WRE

A. T. Moffet, Caltech
G. Nicholson, CSIR

Croup B

J. J. Broderick, NAIC

B. C. Clark, NRAO

M. H. Cohen, Caltech

D. L. Jauncey, Cornell

K. I. Kellermann, NRAO

G. H. Purcell, Caltech

D. B. Shaffer, Caltech

Group C

T. A. Clark, GSFC

R. M. Goldstein, JPL

H. F. Hinteregger, MIT

C. A. Knight, MIT

G. E. Marandino, Univ. of

Maryland

G. Resch, Univ. of Maryland

A. E. Rogers, Haystack

Observatory

I. I. Shapiro, MIT

A. R. Whitney, MIT

64-m antenna at Goldstone

( working with the MIT Haystack

antenna and/or the NRAO 42-m

antenna )

26-m antenna in Australia
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A Comparison of Cowell's Method and a Variation-of-

Parameters Method for the Computation of Precision
Satellite Orbits: Phase Three Results

S. S. Dallas

Navigation and Mission Design Section

E. A. Rinderle

Flight Applications Programming Section

Additional test cases were run using a precision special perturbations program

employing either Cowelrs method or a variation-of-parameters method to com-

pute a nearly circular, nearly equatorial orbit using two dif[erent perturbative

accelerations. The results obtained again indicate that the variation-of-parameters

method with a predict-only integrator and Cowelrs method with a predict-partial-

correct integrator are equally efficient, and both are significantly more efficient

than Cowelrs method with a predict-correct integrator.

I. Introduction

The primary objective of the second phase of this study
was to determine an accurate measure of the im-

provement to be expected from using the variation-of-

parameters method in place of Cowell's method when

computing precision satellite orbits. Reference 1 shows

that, in the case of the Mariner Mars 1971 Mission A

orbit as described in Ref. 2,

(1) The variation-of-parameters method integrating six

parameters is not significantly more efficient than

(2)

Cowell's method with a predict-partial-correct

integrator;

The variation-of-parameters method integrating six

parameters and Cowelrs method with a predict-

partial-correct integrator are both significantly

more efficient than CoweU's method with a predict-

correct integrator. The Central Processing Unit

(CPU) times are approximately 20% less, and the

total costs are approximately 8% less. These per-

centages will be even larger for perturbative func-
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tions which are more complex than the one used in

this study.

The objective of this third and final phase of investiga-

tion is to compare the variation-of-parameters method

with Cowell's method in the case of a nearly circular,

equatorial orbit (an osculating eccentricity and inclina-

tion of 0 at to). The previous comparisons were made in
the case of the eccentric Mariner Mars 1971 Mission A

orbit (an osculating eccentricity and inclination at to of

approximately 0.633 and 80 deg, respectively). The initial

state vector for this phase of study is

qr = (a, e, i, o,, _, T)

= (4643 km, 0, 0 deg, 328.3937 deg, 38.3701 deg,

11/19/71 14h42 TM UTC) (1)

In addition, two perturbative accelerations are used. The

first perturbative acceleration _:_2÷r_n+spis the same as the

one used previously and includes the effects of the

asphericity of the central body (I2 only), N bodies other

than the central body, and solar radiation pressure. The

second perturbative acceleration i_j2 contains only the

effect of the asphericity of the central body (]2 only).

II. Discussion

In this final phase of investigation, three of the four

processes of orbit prediction compared in phase two of

the study (Ref. 1) are compared for the case of a nearly

circular orbit that lies nearly in the equatorial plane of

Mars. The first process is the variation-of-parameters

method with a predict-only, sixth-order, variable-step

(ERMX/ERMN _ ra/r) integrator. 1 In this process the six

parameters a,, av, h,, hg, h_, and L are integrated. The

parameters a_ and n are determined from the integrated

values of a,, ag, h,, hv, and h_ through the equations (see

Ref. 3)

ag _ _ 1 ( )h_ (a, h, -I- a, hu) and n = V_ 1-a'h__..laa 3/2

(2)

(Note that the parameter a_ is well determined since

h_ >> 0inthe case ofi__ 0). The second process is

CoweU's method with a predict-correct, tenth-order,

variable-step (constant ERMX and ERMN) integrator.

aERMX/ERMN = error maximum/error minimum.

The third process is Cowell's method with a predict-

partial-correct, tenth-order, variable-step (constant ERMX

and ERMN) integrator.

As in phase two, each of the three processes of orbit

prediction was used to generate trajectory data in such a

way that no calibration factors were necessary. In addi-

tion, the cost and accuracy criteria used are the same as

those used in phase two (see Ref. 1).

Sixteen cases were run in this phase. Each case used

the same initial state vector (Eq. 1) and one of the three

processes of orbit prediction described above. Nine cases

used the perturbative acceleration r'XJ2÷_B÷se and seven

cases used the perturbative acceleration _"s •The standard
2

of comparison for each of the two sets was obtained

using process two (Cowell predict-correct) with a very

tight local error control (see Section 6.1 in Ref. 2). In the

first set (_\s2÷z_B+se), three cases were run using each of

the three processes (one case is the standard of compari-

son). The three cases differed only in the proportionality
constants used in the local error control. In the second set

(_2), two cases were run using process one, three cases

(one of which is the standard of comparison) were run

using process two, and two cases were run using process
three.

III. Results and Conclusions

These cases show that the two orbits differ significantly

from each other and from the orbit integrated in phases

one and two. The nearly circular, equatorial orbit using

_ differs from the elliptical Mariner orbit primarily in
2

size and shape (and therefore in size of integration step).

The nearly circular equatorial orbit using _s2÷_B+sediffers

from the elliptical Mariner orbit not only in size and

shape but in the effect of solar radiation pressure. In the

former, the solar radiation pressure plays a dominant role

in the stepping procedure by requiring a restart each time

the spacecraft passes in and out of the shadow of Mars

(every revolution). In the latter, the spacecraft did not

enter the shadow. The two nearly circular, equatorial

orbits differ from each other in the complexity of the

perturbative acceleration (and consequently in the cost

of the derivative evaluations) as well as in the presence

or absence of restarts due to solar radiation pressure.

Table 1 presents the cost and accuracy data for all

three processes of orbit prediction using the perturbative

JPL TECHNICAL REPORT 32-1526, VOL. XI 31



acceleration "\rJ 2 +z_n+se in the nearly circular, equatorial

orbit. Table 2 presents similar data for the perturbative
A

acceleration rj 2.

In comparing the accuracy of the variation-of-param-

eters cases and the Cowel] cases, the single time-point

comparisons used in phases 1 and 2 are inconsistent (a

tighter ERMX does not necessarily yield more accuracy)

and must be replaced by comparisons of the error propaga-

tion curves given in Figs. 1--4. This inconsistency appears

to be due to the insensitivity of the local error control

when the orbit is nearly circular. For example, the two

cases run using Cowell's method with a predict-correct

integrator yield the same accuracy for values of ERMX

quite different (see Table 2).

The cases in Table 2 are essentially fixed-step integra-

tions, since they begin with a step size of 30 seconds,

immediately double until the local error approaches
ERMX, and then continue at that step size. Unfortu-

nately, the final step sizes in the Cowell cases do not

appear to be optimally determined, since a tighter ERMX

does not necessarily yield more accuracy.

Figures 1-4 exhibit the more systematic error growth

in the case of the variation-oLparameters (consistent with

phases 1 and 2). In addition, these figures show that the

errors for all these cases are roughly the same during

the first 20 revolutions. It appears that these cases need
to be run for more than 20 revolutions or with a more

sensitive local error control in order to show large error
differences.

Based upon these tables and figures and the results of

phases one and two (see Refs. 1 and 2), the following

primary conclusions are made:

(1) The variation-of-parameters method is not signifi-
cantly more efficient than Cowell's method with a

predict-partial-correct integrator regardless of the

type of orbit or complexity of the perturbative
acceleration.

(2) The variation-of-parameters method with a predict-

only integrator and CoweU's method with a predict-

partial-correct integrator are both significantly

more efficient than Cowell's method with a predict-

correct integrator regardless of the type of orbit or

complexity of the perturbative acceleration. The

CPU times are approximately 20%, 17%, and 16%

less, respectively, in the case of the elliptical orbit

perturbed by rjz+rB+sp, and the nearly circular orbit

(3)

perturbed by i') +_B+se, and the nearly circular orbit
\2

perturbed by i'%. In addition, the total costs are
approximately 8%, 12%, and 6% less, respectively.

A comparison of these percentages for the cases of

the nearly circular orbit shows that an increase in

the complexity of the perturbative acceleration re-
sults in increases in these percentages. Conse-

quently, these percentages will be even larger for

perturbative accelerations that are more complex
than the ones used in this study.

The variation-of-parameters method should not be

incorporated into the standard production and mis-

sion operations versions of DPTRAJ, since the

equally efficient Cowelrs method with a predict-

partial-correct integrator already exists as an option
in these versions. However, the variation-of-

parameters method should be maintained in the
research version of DPTRAJ so that future studies

can be conducted as new cost saving ideas arise

and as funds and manpower become available.

In addition to these primary conclusions, the following

secondary conclusions based on the data in phase
three are made:

(1) The present local error control based upon ERMX

and ERMN is insensitive in the case of a nearly

circular orbit. In this case, a fixed-step integrator

should be used with a specialized algorithm for

choosing the optimum step size.

(2) Only the perturbative effects consistent with the

desired accuracy should be used during an integra-

tion. For example, suppose an accuracy is desired

of order 1z in 20 revolutions of a nearly circular

orbit. It would cost half as much and be four times
o\

"x instead of rj2+z_n+seas fast to integrate using ra 2

(see Tables 1 and 2).

(3) The variation-of-parameters method as formulated

in Ref. 3 can compute satellite orbits having eccen-

tricities and inclinations near or equal to zero as

efficiently as Cowell's method.

IV. Summary of Complete Study

Test cases run using a precision special perturbations

program employing either Cowelrs method or a variation-

of-parameters method to compute an elliptical orbit for

two widely different eccentricities and inclinations were

analyzed to determine which method is more efficient.
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The results obtained indicate that the variation-of-

parameters method with a predict-only integrator and

Cowell's method with a predict-partial-correct integrator

are equally efficient, and both are significantly more effi-

cient than Cowell's method with a predict-correct inte-

grator. Either of the former more efficient methods for

computing precision satellite orbits offers the potential

for reducing the total cost of computations during orbit

design and computer execution time during real-time

mission operations for future orbiter projects.
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Table 1. Cost versus accuracy using rj2+_ms p

Method

Local error control Accuracy a Cost

ERMX

Core time

ERMN i_rl,m i_i.l,m/s cPu product,
time, s kiloword/h

Tota] cost,

dollars

Through-

put time, s

1. Cowell predict-correct 10 -11 10 -1" 0.149 0.00010 247 7.50
0.082 0.00005

2. Cowell predict-correct 10 -9 10 -14 0.465 0.00029 187 6.24
0.379 0.00026

3. Cowell predict-partial- 10 -11 10 -1" 0.261 0.00018 202 6.58
correct 0.220 0.00014

4. Cowell predict-partial- 10 -1° 10- a5 1.67 0.00108 176 6.00
correct 1.75 0.00116

5. Cowell predict-partial- 10 -9 10 -14 0.512 0.00032 157 5.58
correct 0.427 0.00030

6. Variation-of-parameters, 10 -9 (ra/r) 10 -a3 (ra/r) 2.203 0.00143 188 6.29

predict-only 2.276 0.00151

7. Variation-of-parameters, 5× 10 -9 (ra/r) 5× 10 -lz (ra/r) 2.867 0.00187 177 6.03
predict-only 3.049 0.00202

8. Variation-of-parameters, 5/2 × i0 -s (rJr) 5/2 × I0 -lz (rJr) 0.766 0.00051 155 5.42

predict-only 0.802 0.00052

81.43 514

67.47 445

71.20 482

64.81 451

60.12 433

68.15 465

65.31 454

59.00 437

"These errors occur in revolution 20 at t - t o = 50 h 40 min and 52 h, respectively (period of orbit -_2 h 40 rain)

Table 2. Cost versus accuracy using _2

Local error control Accuracy _ Cost

Method Core time

ERMX ERMN tar[,m m IA_I, CPU product,
mm/s time, s kiloword/h

Total cost,

dollars

Through-

put time, s

1. Cowell predict-correct

2. Cowell predict-correct

3. Cowell predict-partial-

CO1Tect

4. CoweU predict-partial-

correct

5. Varlation-of-parameters,

predict-only

6. Variation-of-parameters,

predict-only

10 -11 10 -1° 5.864 0.0036 62 3.67

4.302 0.0031

10-9 10 -14 5.864 0.0036 63 3.79

4.302 0.0031

10 -11 l(k TM 5.983 0.0037 52 3.47

4.569 0.0032

10 -9 10 -14 5.983 0.0037 52 3.61

4.569 0.0032

10 -9 (fair) 10 -az (fair) 0.874 0.0005 60 3.19

0.328 0.0002

5/2 ×10- 8 (fair) 5/2 × 10-1z (fair) 61.010 0.0651 44 2.83
40.500 0.0597

35.77 337

36.70 363

33.47 304

34.42 328

32.21 316

28.25 300

aThese errors occur in revolution 20 at t - t o = 50 h 40 min and 52 h, respectively (period of orbit -_2 h 40 min).
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Use of Doppler Determinations of Polar Motion Using

Artificial Satellites to Support JPL Planetary Missions

H. F. Fliegel
Tracking and Orbit Determination Section

Standard deviations and systematic difierences are calculated between the

U. S. Navy Weapons Laboratory (USNWL) determination of the X and Y coordi-

nates of the pole, using artificial satellites, and the smoothed 5-day means pub-

lished by the Bureau International de l'Heure (BIH). The results indicate slowly

varying errors of about I meter in the conventionally obtained optical data of BIH,

now used by ]PL. Although current values of polar coordinates should be based

upon the BIH Rapid Service, values for previous months might be improved with

the help of USNWL doppler data.

An important factor in attaining the navigational accu-

racy realized in JPL deep space missions is precise

knowledge of polar motion. To obtain such information

during the Mariner Mars 1971 mission, JPL sponsored a

contract with the Bureau International de l'Heure (BIH)

to form a rapid time and polar motion service (Ref. 1).
C. C. Chao and the author have considered the import-

ance of using the U. S. Naval Weapons Laboratory

(USNWL) polar motion values, obtained from doppler

tracking data on navigational satellites, to check the

results which are obtained by BIH using conventional

astronomical means (Ref. 2). Here the biases and stan-

dard deviations of recent USNWL data are given with

respect to BIH, thus updating the tables of Ref. 2.

The differences between the USNWL 5-day mean

values of the X and Y coordinates of the pole and the BIH

smoothed values interpolated to the same date are

graphed in Figs. 1 and 2. The standard deviations and

the mean values of these differences, calculated year by

year from the inception of the USNWL service, are

given in Tables 1 and 2. Notice that the values given

here differ slightly from those given in Ref. 2. This is

because in Ref. 2 we measured USNWL against un-

smoothed BIH 5-day means and combined the results
with other data to infer the standard deviations of

USNWL and of BIH separately, whereas here are pre-

sented only the differences between USNWL and BIH

smooth data. The BIH smoothed 5-day values are really
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more than averages; they are values from a highly

smoothed function read off and published by BIH at

5-day intervals. Calculations were made by interpolating

normal points formed first from sets of 2, then in sub-

sequent computer runs from sets of 3 and from sets of 4

BIH 5-day values. They never differed significantly from

calculations made by interpolating the 5-day values

directly. On the other hand, combining USNWL data

into normal points reduces the noise level in the manner

shown by Table 1 and Fig. 3. Table 1 indicates that the

standard deviations in Y (the axis through the U.S.) are

larger than those on X (through Europe) in 1970 and

1971, which may reflect the deployment and relative

accuracy of the naval tracking stations. However, these
differences are no doubt smaller than the uncertainties

of the standard deviations.

Figure 3 illustrates how the random error of the doppler

data decreases with the number of days of doppler data

combined to form normal points. The curve is much

flatter than that appropriate to a Gaussian distribution,

indicating a fair amount of nonwhite, time-correlated
noise.

The values of Table 2 represent the average biases

between BIH and doppler results; and these biases,

unlike the standard deviations, cannot be ascribed en-

tirely to the doppler data. In Figs. 1 and 2 are shown

both the International Polar Motion Service (IPMS) and

the USNWL doppler values for X and Y, minus the BIH

values. Thus, the X axes in Figs. 1 and 2 would indicate

zero difference from BIH. There is evidently strong cor-

relation of the IPMS data with the doppler data against

BIH, especially in Y during 1970-1971. This correlation

indicates that the slowly varying errors which produce

the biases of Table 2 are produced largely by systematic

effects in the BIH data or reduction procedure.

Nevertheless, BIH Rapid Service data are still the

source of polar motion information best suited to JPL

mission support, since BIH data are virtually free of the

very large random residuals which occur in the doppler

results. In real-time mission support, one typically en-
counters either of two situations:

(1) A maneuver or some incident occurs only a few

days before planetary encounter, as with Mariner 7.
The orbit determination on which the success of

(2)

the mission depends is based upon the short arc

of tracking data obtained after the maneuver or

incident. The accuracy of this determination de-

pends on the exactness with which polar motion is

known during that short interval. Large random

errors are more serious than slowly varying errors
of 1 meter or less. In this crucial situation, the BIH

Rapid Service supplies our need.

No maneuver or incident interrupts a long arc of

tracking data, upon which the orbit determination

may confidently be based, as with Mariner 9.

Exact polar motion information is not so essential

as in the former situation, because the character-

istics of the orbit of the spacecraft around the Sun

provide more information concerning its position

than does the doppler signature produced by the

rotation of the Earth. Nevertheless, determination

of station locations are made more accurately if

long-term errors in polar motion are minimized,

and to this end the USNWL doppler data may be
useful.

For future JPL missions such as MVM 73 and Viking,

a mixed data set may be best, in which current values

for polar position are based upon the BIH Rapid Service,

and values for previous months are estimated with the

help of USNWL doppler data. In future articles, we will

discuss the best attainable models for polar motion, its

physical characteristics, and optimal strategy for future
missions.

The following conclusions have been drawn:

(1) The standard deviations of USNWL doppler de-

terminations of the X and Y coordinates of polar

position have held more or less constant during

1969.0-1972.0, at about 1 meter.

(2) The biases between USNWL and BIH are also at
about the 1-meter level.

(3) The strong correlation between USNWL and IPMS

against BIH indicates a slowly varying error in
BIH data.

(4) Nevertheless, the BIH Rapid Service is still best

suited to JPL needs. Both BIH and USNWL data

should be used in support of future planetary
missions.
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Table 1, Standard deviations of USNWL data from smoothed 5-day means of BIH (meters)

5-day means lO-day means 15-day means 20-day means

Year Coordinate

X Y X Y X Y X Y

1968 1.575 1.390 1.448 1.045 1.409 0.974 1.369 0.882

1969 0.961 0.927 0.767 0.808 0.735 0.755 0.709 0.688

1970 0.960 1.006 0.871 0.934 0.844 0.881 0.823 0.823

1971 0.864 0.945 0.710 0.788 0.642 0.720 0.614 0.682

Table 2. Mean yearly differences (USNWL - BIH) (meters)

Year

Coordinate

X Y

1968 + 1.515 -1.911

1969 + 1.037 - 1.704

1970 -0.370 +0.000

1971 -0.290 -0.806
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An Evaluation of Charged Particle Calibration by

a Two-Way Dual-Frequency Technique and
Alternatives to This Technique

O. H. yon Roos and B. D. Mulhall

Tracking and Orbit Determination Section

This article relates to the accuracy of the three charged particle calibration

methods - differenced range versus integrated doppler (DRVID), Faraday rota-

tion, and dual frequency - as they apply to the various tracking modes, e.g., one-

station tracking, two-station tracking, spacecraft very long baseline interferometry

(VLBI). It is found that many calibration schemes are deficient at small Sun-

Earth-probe angles (SEPs). Observations of the Sun during its active period

between 1967 and 1969 have been used to obtain quantitative information on

range degradation at small Sun-Earth-probe angles. Likewise, range errors at

SEPs during a quiet Sun period (in this case the 1964-1965 solar minimum) have

also been computed with the result that, even at times of a comparatively inactive

Sun, range errors engendered by plasma clouds are still troublesome inasmuch as

they prevent range measurement with an accuracy of less than 1 meter.

I. Introduction

In order to perform a systems analysis of the best possi-

bilities for calibrating charged particles, the major track-

ing modes and the three major charged particle calibra-

tion methods are presented together with an error

analysis.

II. Tracking Modes

The seven major tracking modes can be separated into

two general categories: one-station tracking and two-

station tracking.

A. One-Station Tracking Modes

(1) Two-way ranging. This mode, very well established

for years, consists of transmitting a range code

toward the spacecraft that, when transmitted back,

will be received at the transmitting station and

referenced to the range code continuously gen-

erated. By this means the round-trip light time is

measured and the range ascertained.

(2) Two-way doppler. In this case the frequency shift

of the RF carrier transmitted and received by a

single station is determined and gives information
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on the velocity of the spacecraft relative to the

station.

B. Two-Station Tracking Modes

In two-station tracking, differences are measured, e.g.,

differences of range or range rates (doppler) as deter-

mined from two stations far apart. As shown in Ref. 1,

these tracking modes are used because geocentric range

and range rate are subject to a number of errors which,

for convenience, are lumped together and termed

"process noise" - erratic forces due to solar radiation

pressure, pressure leaks in the spacecraft, etc., which are

difficult to model. By differencing ranges or range rates

as measured from two different stations, the geocentric

range will drop out of the relevant equations and most

of the process noise will be cancelled. 1 A number of new
modes thus are made feasible.

(3) Two-way minus three-way doppler. In this mode
one station transmits a carrier frequency and two

stations receive the returned signal simultaneously.

By differencing the information, the range rate

difference, o__- p3, is determined.

(4) Two-way minus three-way ranging. In this case a

wideband signal modulated with a range code is

transmitted to the spacecraft from one station, and

two stations simultaneously receive the returned

signal. By differencing the information, the range

difference, pz - 03, is obtained.

(5) Alternate ranging. Here, ranging measurements are

performed from two stations alternately because

two different ranging machines transmit different

range codes, and one transponder on the spacecraft

cannot transpond the two signals if they are re-

ceived simultaneously. This technique is opera-

tionally complicated, requiring approximately an

hour of ranging by one station, then a transfer to
the second station for an hour of ranging, then

a transfer of the spacecraft to the first station, and

so on until the overlap time expires.

(6) Simultaneous ranging. This mode of ranging is

quite similar to alternate ranging, the only differ-

ence being that the two stations range at the same

time, which is possible ff two frequencies and two

transponders are employed. Two frequencies are

under active consideration, for reasons to be dis-
cussed below.

aThe reason for this is that the angular motions are much less pro-
nounced than the radial accelerations.

(7) Spacecraft VLBI. In this mode of operation two

stations are listening simultaneously to the space-

craft. No ground based transmission is involved.

The received signals are cross-correlated and the

differenced range determined directly.

III. Calibration Modes

Opposite the seven tracking modes are three basic

charged particle calibration methods which can be used

in any combination.

A. Faraday Rotation (FR)

This calibration method is based on the fact that the

plane of a linearly polarized wave will be rotated in a

magneto-active plasma. By measuring the rotation, con-
clusions can be drawn as to the electron content of the

intervening plasma. Since the linearly polarized wave

may be transmitted from the spacecraft or from an
Earth satellite, there exist two different versions of the

FR calibration method: satellite FR and spacecraft FR.
The inherent accuracies of these two methods are some-

what different and will be discussed later.

B. Differenced Range Versus Integrated Doppler

(DRVID)

This calibration is based on the fact that the group and

phase velocities of an electromagnetic wave differ in a

plasma. However, since the phase velocity is that of a

very narrow bandwidth signal (doppler), DRVID is only

capable of calibrating range rates.

C. Dual-Frequency Calibration

This is by far the most promising method for correcting

the range and range rate errors caused by the ionosphere

and the interplanetary plasma. It consists of transmitting

and receiving the same signal at two different frequencies

(S and X band). The difference in integrated doppler and

also in range for the two frequencies is a direct measure

of the total electron content. The differenced doppler

provides a precise but ambiguous charged particle mea-

surement, while the differenced range provides an

unambiguous (though noisier) measurement.

IV. Error Analysis of the Major Calibrations

A. Faraday Rotation

The calibrations based on the FR are capable of re-

moving only the range and range rate errors due to the
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ionosphere (Ref. 2). This is even true, generally, for the

spacecraft FR mode, since the space plasma's magnetic

field is very small (_10 -6 gauss) and the rotation of the

plane of polarization amounts only to extremely small

fractions of a degree at S-band (10 -8 rad) while the iono-

sphere typically produces rotations of the order of 1 to

i0 deg of S-band. An exception is the solar corona. When

the Sun-Earth-probe angle (SEP) becomes less than 5 deg,

the solar plasma activities may give rise to large excur-

sions from the ionospheric background (Ref. 3). Very

close to an active Sun, rapid changes of the plane of

polarization of 40 deg/h are not uncommon.

An error analysis, (see Appendix A), has been per-

formed on the degrading influence of the solar corona on

FR measurements. There it has been shown to expect a

range rate error of about 10 m/h due to the solar corona

during a sunspot maximum at an SEP of 5 deg. Space-
craft FR calibration will be insensitive to the solar corona

for SEPs larger than 5 deg because of the rapid decrease

of the magnetic field strength in solar plasma clouds.

However, the range uncertainty is still severe (_ 1 m).

It must be emphasized that the foregoing considerations

presuppose an active Sun. During a quiet Sun period,

however, the problem of range uncertainties still persists

for very small SEPs (< 5 deg) simply because the solar

corona is not known as accurately as required. The

electron density quoted for instance in Ref. 3 may well

be off by a factor of 2 (C. T. Stelzried, private communi-

cation). Therefore, for extremely small SEPs the space-

craft FR calibration mode will be uncertain regardless of

the status of the Sun's activity.

We can deal with the satellite FR mode briefly, since

it has been discussed at length elsewhere (Ref. 4). In

short, the rotation of the plane of polarization of an

electromagnetic wave in the line of sight between a
satellite and an Earth-bound station is measured con-

tinuously. In this way the electron content of the iono-

sphere in the line of sight between satellite and an Earth
station is determined. However, what is needed for cali-

bration is a knowledge of the electron content in the line

of sight between the spacecraft and this station. There-

fore the electron content has to be mapped to the line

of sight between spacecraft and station. This is done at

JPL via the computer program Hyperion. A detailed

description of Hyperion is given in Ref. 5. (Certain

assumptions, e.g., a Chapman layer for the ionosphere,

are inherent to the program.)

Although the above-mentioned assumptions have been

proven to be generally correct, the actual deviations from

this model are such that a range error of 1.5 m accumu-

lating during an 8-h pass can be expected in summer,

and an error of 0.5 m can be expected in fall, winter, and

spring. (Ref. 6).

To summarize, both FR modes have certain limitations.

The satellite FR mode obviously can calibrate only the

ionosphere and must therefore be complemented with

other calibration schemes, but may then become quite

useful. For the spacecraft FR mode the same holds

generally true. Although there is the disadvantage of a

lack of true ionospheric calibration at small SEPs

(<5 deg) during an active Sun period due to the solar

corona, this is more than offset by the fact that the

previously mentioned mapping with all its uncertainties

is unnecessary. Later, when the dual-frequency method

has been introduced we will see how the spacecraft FR

mode can be used to advantage.

B. Differenced Range Versus Integrated Doppler

This method (see Ref. 7) is used to calibrate for

charged particles. Its principle is based on the fact that

phase and group velocities differ in a plasma. It can be

used to calibrate range rates and range differences only,

never the absolute range. As far as the accuracy is con-

cerned it must be realized that the main problem in this

type of calibration is the ranging channel. The signal-to-

noise ratio for the ranging system slated for the outer

planets mission is the same as for the Viking mission

(G. E. Wood, private communication), and therefore the

error analysis by MacDoran (Ref. 8) is applicable. Ac-

cording to this analysis 27 • 10 -9 s "ranging jitter" for a

15-min integration time provides a calibration accuracy

to the 1-m level. The hardware requirements for this kind

of accuracy do not seem to be insurmountable at all; as a

matter of fact Madrid in his tracking system analytical

calibration (TSAC) activities (Ref. 9) has already achieved

a sigma of 1 m during the Mariner 9 mission. To sum-

marize, DRVID is a useful tool for charged particle cali-

brations which can confidently be expected to be accurate

to the 1-m level, but by its nature cannot calibrate

absolute ranges and therefore does not apply to tracking

methods i, 4, 5, 6, or 7.

C. S/X Dual-Frequency Calibration

By far the most promising charged particle calibration

mode is the utilization of a dual-frequency system. The

question arises immediately whether a downlink only

S/X-band system, which is presently planned, is suffi-
cient for an accurate calibration or whether a combined

up and down S/X system is needed. An analysis has been
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made in Appendix B, showing that at SEPs smaller than

20 deg an uplink and downlink dual-frequency system

is definitely needed if the Sun is active and the desired

accuracy is to be below the 1-m level, the reason being of

course that in a time-dependent medium the uplink total
electron content cannot be inferred from the downlink

content. The analysis has been applied to a numerical

estimate of range errors at small SEPs if only a downlink

S/X system is used; Fig. 1 gives the results. The solar

plasma data used to evaluate Fig. I are extracted from

Ref. 10 (see also Appendix B).

Summarizing, we emphasize that a dual-frequency cali-

bration, if done on both the uplink and downlink, is by

far the most accurate ranging calibration known. If only

a downlink S/X band system is used, a range inaccuracy

develops at small SEPs (<20 deg). This is particularly
true for an active Sun (see Fig. 1). 2

V. Combination of Calibration Modes

After having delineated the main modes of calibration

we will now briefly discuss combinations of them. It is

clear that the FR methods can be used only in conjunc-

tion with the other two since the former only calibrates

the ionosphere. On the other hand the two-way dual-

frequency method is self sufficient. A promising com-

bination of methods is combining either of the FR modes

together with the downlink-only dual-frequency method.

For, if the space plasma is quiet, because of a quiet Sun

or because the SEP is large, the only long-term time

variations are the diurnal variations of the ionosphere.

The calibration for the uplink is then provided for by FR.

If the space plasma is active, the downlink dual-frequency

measurement will differ from the FR measurement and,

though the exact calibration cannot be computed, the

size of the error caused by neglecting the uplink space

plasma effect can be bounded. It appears then that the

most promising charged particle calibration techniques
are:

(1) Uplink and downlink dual-frequency.

(2) Faraday rotation plus downlink dual-frequency.

Whereas the first method is foolproof, the second has
some limitations. These limitations relate to the fact that

for small SEPs and an active Sun, range uncertainties

will occur as depicted in Fig. 1.

2For details see Appendix B.

One interesting combination, however, exists in which

DRVID may help the downlink-only S/X-band ranging

capability. Suppose the solar plasma is quiescent for some

time prior to t = to. The dowrdink electron content is

then the same as the uplink content, and the uplink con-

tent can therefore be determined. Suppose further that at

to and thereafter, solar plasma clouds and streamers enter

the ray path and change the electron content rapidly

(changes of 5 • 101rm -2 in the electron content within

30 min are not uncommon). DRVID will immediately

become active and the uplink electron content may be

determined. However, for SEPs less than 20 deg occasions

of this type are rather rare.

VI. Comparison of Techniques

We can now compare the charged particle calibration

modes and cross-correlate them with the various tracking

modes mentioned at the beginning of this article. This is

done in Table 1. The various ranging and tracking modes

are listed according to the number assigned to them in

Section I. It is to be noted from Table 1 that spacecraft

VLBI is adequately calibrated with a downlink frequency

system only. This is of course obvious, but it should be

pointed out specifically. On the other hand, it would

seem that the differenced tracking modes (3 to 6) are not

beset by the range calibration uncertainties for small

SEPs of the downlink-only S/X-band calibration method,

since the two ray paths, separated by some 7000 kin,

experience generally the same plasma activities, and

when the ranges are differenced, the uncertainties cancel

to the 10-cm level. This happens indeed to be true for
modes 3 and 4. Both of these modes have one com-

mon uplink, and therefore any range degradation caused

by plasma clouds passing the ray path during the transit

of the radio signal on its uncalibrated uplink will exactly

cancel upon differencing the ranges. However, for modes
5 and 6 this is not true. In mode 5 the two stations

track about an hour each alternately, and the uncalibrated

uplink gives trouble at small SEPs since plasma clouds

can come and go within an order of hours. Finally,

mode 6 cannot be calibrated properly with a downlink-

only S/X-band system simply because the two stations

operate at two different frequencies and the space plasma

affects them differently.

VII. Summary

We have deseribed three methods by which the de-

grading influence of electromagnetic plasma interactions

on range and range rate values can be eliminated, at

least partially. Table 1 gives the results of this analysis.
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We have found that the S/X-band dual-frequency cali-

bration, if employed for both the uplink and downlink, is

superior to all other methods, particularly for one-station

tracking. However, downlink-only S/X is quite adequate
for two-station tracking in modes 3, 4, and 7. We have

also seen that a combination of Faraday rotation with

downlink-only dual-frequency is a viable candidate for

charged particle calibration. Both methods work equally

well during times of a quiet Sun; but at small Sun-Earth-

probe angles and during periods of an active Sun, range
calibration errors for downlink-only dual-frequency may

become severe (see Fig. 1).
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Table 1. Expected total range error over one pass due to charged particle calibration uncertainties

Ranging or tracking

Charged particle calibration mode

Satellite FR a Spacecraft FR b DRVID S/X, downlink S/X, uplink and
only downlinko

Pz ( 1 ) ( 1 ) 1.5 m 1.5 m Not applicable 0.5 nad 0.5 m

P2 (2) (2) 1.5 m 1.5 m 1 m 0.5 m d 0.5 m

/)2 -P3 (3) (3) e 2.0 m 2.0m 1 m 0.5m _ 0.5 m

P2 -P3 (4) (4) e 2.0 m 2.0 m Not applicable 0.5 mf 0.5 m

Altitude ranging ( 5 )e 2.0 m 2.0 m Not applicable 0.5 m c 0.5 m

Simultaneous ranging (6) _ 2.0 m 2.0 m Not applicable 0.5 me 0.5 m

Spacecraft VLBI ( 7 )e 2.0 m 2.0 m Not applicable 0.5 mf Not applicable

aCalibrates the ionosphere only.

bCalibrates the ionosphere only except for Sun-Earth-probe angles less than 5 deg, when the corona degrades calibration to an un-

acceptable level.

¢In this ideal mode only instrumentation limitations are present. They are estimated to be at the half-meter level.

aThe hardware limited value quoted is only applicable if the Sun-Earth-probe angle is larger than 20 deg and the Sun is not active

(Fig. 1).

eThe reason for the increase in inaccuracy for tracking modes (3) to (7), relating to the Faraday rotation, is the fact that the iono-

spheric environment differs between the two tracking sites and an rms average was taken.

tThe only tracking modes for which downlink only S/X-band is totally adequate.
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Fig. 1. Estimated range error for S/X-band downlink calibration
only, due to time variation in the solar wind (valid for one-

station two.way ranging p_)
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Appendix A

Range Degradation Due to the Solar Corona

The following analysis gives an estimate of the degrad-

ing influence of the solar corona on FR measurements.

To be specific let the SEP be 5 deg, corresponding to a

closest distance of the ray path from the Sun R = 10

(measured in Sun radii). Let us take the improved plasma

electron density as given by Stelzried (Ref. 3):

where R' is the radius of the Sun in meters. Now, for

R1 = 10 this amounts to

I10 = 5.6 " 101Sm -2

[ 6000 0.002 \

N = 10"_--_T T + T)(inm-_)<4 < R < 12) <A-I)

This is valid for the quiet Sun. If the closest distance of

the straight ray path from the Sun is R1, then the total

electron content within the sphere of the influence of the

solar corona (R < 12) for a quiet Sun is given by

I:XO1,R,f(122-R )"2( 6000
+

0.002 )+ dx (in m -z)
R_ +x _

(A-2)

corresponding to about 36 m of range error at S-band.

Adopting a Parker magnetic field, the Faraday rotation

turns out to be some 10 deg. When plasma bursts occur

from an active Sun, similar polarization changes (10 deg/h)

have been observed on Pioneer 6 (Ref. 3), which would

indicate that range rate errors of some 30 m/h can occur

under the assumption that the same magnetic fields pre-

vail (this is for an SEP of 5 deg). However, the magnetic

fields in plasma clouds close to the Sun are likely to be

larger by a factor of 2 to 10, which cuts down the range

error by the same factor. We therefore expect a range

rate error of about 10 m/h due to the solar corona during

a sunspot maximum at an SEP of 5 deg.
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Appendix B

Analysis of a Time Changing Solar Plasma

The following analysis will show that at SEPs smaller

than 20 deg, an uplink and downlink dual-frequency

system is definitely needed if the Sun is active and the

accuracy derived is to be below the 1-m level 3. The

analysis goes as follows: Let R8 be the range as seen at

the S-band frequency (Ref. 11)

f0R )N x,
R_ = R + o,2s c+ t dx + N x, 21:{ -- x I+ t dx (B-l)

c

where

we 2

_n

,o_ = S-band frequency

,o_t = S-band transponder frequency

R = true range

N(x,t) = electron number density as a function of ray

path x and time t

On the other hand the range as seen at the X-band fre-

quency is, according to the foregoing, given by

foC ) )R x _ 2R -- x
a N x,--+t dx+-- N x, +t dx (B-2)

R_ = R + ,o_. e _ c

where

o,_ = X-band frequency.

Were it not for the explicit time dependence of the

electron density, a time dependence which is particularly

annoying and unpredictable when the ray path passes

near the Sun, Eqs. (B-l) and (B-2) could easily be solved

for the two unknown quantities R and the electron con-

tent. However in reality we have, in general, two equa-

tions and three unknown quantities.

To extract information on R proves to be generally im-

possible. Since the range is measured at many different

times, the only possibility might be to shift the time by
an amount A such that

/o(x ) fo( )N X,c+t dx= N x, c +t+_ dx

(B-3)

The unknown integrals of Eqs. (B-l) and (B-2) are deter-

mined by differencing (B-1 and (B-2). In general, no such

/x exists, and therefore a complete charged particle cali-

bration is not possible. If, however, the time-dependent

activity of the solar wind is localized in the path at Xo,

say, we may represent the electron density by

N = LS(x - Xo) F(t) (B-4)

where L is the special extent, and have from Eq. (B-4),

)F --+t =F +t+_x (B-5)
c c

so that/x = 2(Xo - R)/c indeed satisfies Eq. (B-4). How-

ever, we do not know Xo.

As to the numerical estimates underlying Fig. 1, we

notice first that the electron density behaves approxi-

mately as R -2 and the path length through a plasma

cloud goes as R, where R is the distance from the Sun

aThe considerations given here are applicable for tracking modes

1, 2, 5, and 6. In tracking modes 8 and 4 the space plasma is

"differenced away" to well below the 1-m level.
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(see in particular V. V. Vitkevich, Ref. 10), so that the

total electron content of a plasma cloud is expected to
behave as:

f 1Nds _ _ ,_ (SEP) -_ (B-7)

Furthermore at an SEP of 20 deg the distance from the

Sun is sufficiently large so that the electron content time

variations as found by the Stanford group (R. L. Koehler,

T. A.Croft, Ref. 10) apply. The two integrals in Eqs. (B-l)

and (B-2) are expected to differ by 2 m then in the limit

of large R. For intermediate R the time delay between

uplink and downlink becomes shorter and the difference

between the two integrals in Eqs. (B-l)and (B-2)

becomes progressively smaller. The references quoted so

far pertain to an active Sun period. During a quiet Sun

period there is still sufficient activity (plasma clouds,

flares, etc.), however, to degrade the range determination

by a few meters at small SEPs (Ref. 12).
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Derivation of a General Expression for Ionospheric Range

Corrections Valid for Arbitrary Solar Zenith Angles,

Azimuths, Elevation Angles and Station Locations

O. H. yon Roos and K. W. Yip
Tracking and Orbit Determination Section

A general expression is derived for the electron density profile as a function of

latitude and longitude for that part of the Earth which is in direct sunlight

including dawn and dusk. This expression allows one to determine by standard

means the range correction for arbitrary ray path directions. It is also shown that

the naive application of the Chapman ionosphere entails range correction errors

which for low elevation angles (<20 deg) and large solar zenith angles (>40

deg) cannot be tolerated. Numerical calculations are displayed showing the

dependence of the range correction on the pertinent parameters.

I. Introduction

It is well known that for high frequencies to of a radio

wave, the susceptibility of a plasma e- 1 is given by

2

e - 1 - ,op (1)

where ,op = 4r e'-' N/m is the plasma frequency propor-

tional to the electron number density N (Ref. 1). A radio

beam traversing the ionosphere for the purpose of track-

ing a satellite or a spacecraft will accordingly be affected

by the plasma of the ionosphere. 1 It is also known (Refs.

3 and 4) that the quantity most important for the deter-

llf the cyclotron frequency _c ¢ _, magnetic effects are negligible
(Ref. 2) and Eq. (1) is a very good approximation.

mination of the range correction is the total electron
content:

i = f N(s)ds (2)

where the integral is taken over the ray path.

In order to successfully calibrate for range errors, I

must therefore be known. Usually I is determined by

means of Faraday rotation measurements (Ref. 5) along

the ray path between a geostationary satellite and an

observer on Earth. But, to calibrate the range to a space-
craft, the total electron content I in the ray path con-

necting the spacecraft with the observer must be known.

In order to be able to determine this quantity, a mapping
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from one ray path to the other must be performed. This
can be done only with a model of the ionosphere. In the

next Section we will derive such a model based on prin-

ciples laid down and explored by Chapman many years

ago (Ref. 6).

This three-parameter model will be applied subse-

quently to the determination of the ionospheric range

correction for any arbitrary ray path arbitrarily located
on the sunlit face of the Earth.

II. The Ionospheric Electron Profile

For small zenith angles, the Chapman electron density

profile is given by the expression

Ne(Z)=N .... exp {1 [1 -- Z -- see X exp (--Z)]}

where

(3)

h -- h max

Z--
H

N .... = maximum electron concentration at altitude

h=h ..... and, forx=O

x = angle between the direction of the Sun's rays
and the zenith

H = scale height of the ionosphere

From first principles it can be shown that the follow-

ing expressions hold (see the derivation on pages 6 and 7);

aaNoH -= exp(_ -L) (4a)

'_ "/* (1 I _L )ahv / =N ..... exp +_ (4b)

relating the empirical quantities Nmax, h .... to basic quan-
tities as ionization cross sections, etc. These relations are

needed for our derivation of the electron profile. The

meaning of the various terms in Eqs. (4) is:

aa = absorption cross section for ultraviolet radiation

in air, cm z

No = number density of air molecules on ground

(h = 0), cm-3

S_ = intensity of the Sun's ultraviolet radiation outside

the Earth's atmosphere, 10 -7 J cm -2 s-1

a = recombination coefficient of electrons with ions,
cm 3 S-1

hp = average photon energy, 10 -7 J

All quantities above are averages over the ionizing

part of the solar spectrum. As is seen from Eq. (3), for

x = 90 deg Ne (z) becomes identically zero, which obvi-

ously means that Eq. (3) breaks clown at large x. We will

now give a derivation of the electron profile applicable

for all x. To be sure, a derivation for this situation has

been given by Chapman long ago. But since that deriva-

tion is somewhat pedantic and not generally well known,

we felt a concise and short derivation at this place is

not out of order, all the more so since the profile derived

here encompasses all zenith angles of the Sun x and is

valid in three dimensions, unlike most derivations, which

are essentially two-dimensional.

The reasons for formerly confining oneself to only

two-dimensional considerations are certain symmetries

which allow one to map the electron density profile into

three dimensions only if it is known along the Sun's

meridian. This will be explained later. For computa-

tional ease, a three-dimensional mapping is far superior.

To proceed with the derivation, the coordinate system

used in this study will be defined first (Fig. 1). It is a

right-handed Cartesian coordinate system with the x-axis

pointing toward the Sun and the y-axis lying in the

equatorial plane of the Earth.

Note that if the declination of the Sun is 8--/=0, the

z-axis of this coordinate system does not coincide with

the spin axis of the Earth. Figures 2a and 2b give cross-

sections through the x-y and the x-z planes, respectively,

of Fig. 1 for clarification. A polar coordinate system

associated with the Cartesian system just introduced

shall be designated by r, 0o, _o, where these symbols

have their usual meaning. Later we shall link these

coordinates to the usual geographical coordinates with

the help of the declination 8 of the Sun and the universal

time (UT) (see Section III).

In order to find out the number of electrons at r, 00,

and ¢o, we must first know how much radiation is ab-

sorbed at r, how much of this radiation ionizes, how

much recombines, and finally use the stationarity condi-

tion 2Qe = 0 to eventually obtain the electron profile. The

intensity of radiation absorbed at the point r is:

dS = aa NSd_ (5)

where d_ is a line element along a Sun's ray at position

r, 0o, ¢0; S is the solar radiation flux; and N is the number
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density of the neutral species

ponential law; viz.,

assumed to obey an ex-

N = No exp (6)

From Figs. 2a and 2b it is easy to deduce that the line

element dl can be expressed by

dl= dr(l Y_ + z_) -_/" (7)

From Eqs. (5), (6), and (7) it follows that

"_ = O"a N Oexp 1 rZ dr (8)

and since S = S_ at r = _, we have

S=

S_exp{aaNoLrexp( x _HR)(1 X2 • dx

(9)

The number of ionized pairs created per second at r

is now given by

S

h = ai N _v (10)

The rate of electron production h and the rate of electron

recombination aNi Ne, where Ni is the ion concentration,

determines the net rate of change of the electron density:

Ne = h- aNi N_ (11)

Assuming neutrality Ni = Ne and stationarity ]Qe = 0, we

obtain

N_ = _ (12)

the desired result.

From Eqs. (12), (10), and (9), there results

N =CriS_No)" {1[ r--R L_ (x_iiR)( yg+z_)-" ]}ahF exp _ H + ¢.t No exp 1 x'-' dx (13)

We now wish to link the first-principle quantities _i, a,4 etc. to the three parameters which are universally adopted

for a Chapman ionosphere, to wit, N ....... h ..... and H. In Eq. (3), sec X = 0 corresponds to yo = Zo = 0 in Eq. 13).

Therefore, comparing Eq. (3) with Eq. (13), in this case, reveals that

exp(_ -L) =aANoH (14a)

Ne (14b)

in order that Eqs. (3) and (13) agree. Using Eqs. (14), we finally obtain for the electron density profile in standard
notation.

_o__L.2o
N_=N ..... exp l-Z+ e -* 1 (Hx+R+h ..... )-]" dX

(15)

where

Yo= (HZ + R-'_- h ..... ) sinOosinepo_

r-R-hm_ (16) Zo (HZ + R + h ..... ) cOS0o
(17)

Z= H

Finally, if we wish to determine the electron density

profile radially above ground as a function of altitude Z

at the arbitrary position 0o and 4,0, we must put

and insert these expressions into Eq. (15). The range of

Z extends from Z = -h .... /H at the surface of the Earth

to infinity.
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The great circle 4o = 0, which intersects the x-axis and

the z-axis as depicted in Fig. 1, is of course not unique

in the sense that any great circle, provided it intersects

the x-axis at y --z = 0, is equally good. The geometry

of Fig. 1 is invariant with respect to rotations about the

x-axis. If therefore the electron profile is known for all

0o and q_0= 0, it is known throughout the lit hemisphere.

In fact, the electron profile at ¢0 --- 0 and 00 is the same

as that at 0,, = O_ and 4_o= qsl if

sin Oo =sin 01 cos ffl (18)

Two-dimensional calculations as they have been done

exclusively in the past (r, t, q, -- const.), would have been

quite adequate. But since we are going to link the x, y, z

system of Fig. 1 to an Earth-fixed geographical coordi-
nate system to determine range corrections from arbitrary

station locations into arbitrary directions, which are con-

veniently expressed in Earth-fixed coordinates, it was felt

that a mapping of the electron density using one com-

mon coordinate system is advantageous.

Concluding this section, we note that no mention is

made of the solar zenith angle X in Eq. (15). For x = 0,

Eq. (15) is identical with Eq. (3). But for all other zenith

angles x =/=0, Eq. (3) is only an approximation to the
exact result of Eq. (15) (exact within the assumptions of

this theory) and becomes progressively worse as x in-

creases. As a matter of fact, for × = 90 deg, Eq. (3) breaks

down completely. However, Eq. (15) is still perfectly

valid in this case. A glance at Fig. i shows that × = 90

deg corresponds to 4o = r/2 or 4o = 3_/2, in which case

the integral of Eq. (15) is well defined and incidentally

independent of 00 as it should be from symmetry.

The preceding derivation was made under the assump-

tion that the three parameters Ne .... h .... and H are

global in the sense that they are independent of location.

This is, of course, most certainly not true. However, the

geometrical considerations here and in the next section

are not affected by this unfortunate circumstance. The

three parameters just mentioned may then be considered

functions of Oo and 40.

In the next section we shall derive the range correction

for an arbitrary ray path originating from an arbitrary

location on Earth expressed in Earth-fixed coordinates

as long as the station is located on the sunlit side of the
Earth. We shall also dwell on the determination of

the parameters determining the electron profile and show

the errors made when using Eq. (3) instead of Eq. (15).

III. The Range Correction

It has been shown (Ref. 4) that the range correction

due to a tenuous plasma is given by

)"ap = _2rre_ oodr" 1 R2 c°serz "/ Ne (s(r)) (i9)

The symbols in Eq. (19) have their usual meaning: s(r)

is the unperturbed (straight) ray path between the Earth-

bound station and the distant space craft, expressed as

a function of r, the distance from the center of the Earth.

In the coordinate system displayed in Fig. 1, an arbitrary

ray path or a line joining a station's antenna with the

spacecraft may be obtained by the following expression:

eray = (sin y sin 0o cos 4,0 -- cos ), cos a cos 00cos 4o -- cos ), sin a sin Co)e,

+ (sin 7 sin 00 sin 4'o -- cos 7 cos a cos 0o sin ¢o + cos 7 sin c_cos 4,o)eu

+ (sin -/cos 0o + cos 7 cos ct sin Oo)ez (20)

In Eq. (18), 0o and 40 are the polar coordinates, as

introduced earlier. On the other hand, -/is the elevation

angle (the angle between the line of sight and the tan-

gential plane at the surface of the Earth). The angle

is the azimuth of the line of sight. To be specific, a is the

angle between the projection of the line of sight on

the tangential plane and a meridian. We must emphasize

that the coordinate system of Fig. 1 is geared to the Sun,

in the sense that the x-axis points toward the Sun. Pres-

ently we shall give the coordinate transformation from

the system of Fig. 1 to a geographical (Earth-fixed) sys-

tern. The quantities e in Eq. (19) are unit vectors along

their specified directions. Before effectuating the coordi-

nate transformation just mentioned, we shall give the

range correction Eq. (18) concisely in the coordinate

system as explained by Fig. 1.

Defining:

s = --R sin _, + _/r 2 - R 2 cos z _, (21)

we merely have to insert the following expressions for

yo and zo into Eq. (15) in conjunction with Eq. (19) to
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obtain the range correction, to wit:

yo = s (sin v sin 0o sin 4,0 - cos _ cos a cos 0o sin 4,0

+ cos y sin a cos 4,o) + R sin 0o sin 4,0

and

(22a)

zo -- s (sin ,/cos 0o + cos 3, cos ct sin 0o) + R cos 0o (22b)

If therefore the station location 0o, _ is known in this

coordinate system and if the elevation angle e as well

as the azimuth a is also known, it is then an easy matter

to determine the range correction using Eq. (19). How-

ever, coordinates are usually given in an Earth-fixed

geographical coordinate system. We must therefore per-
form a transformation from the coordinate system of

Fig. 1 to the conventional geographical system. Figure 3

will help to do this. There we show the old coordinate

system x, y, z (x pointing toward the Sun and y lying in

the equatorial plane) together with the new coordinate

system X, Y, Z, where X and Y lie in the Earth's equa-

torial plane, and X defines the Greenwich meridian. The

angle T between the Greenwich meridian and the direc-
tion x toward the Sun is called the universal time. The

declination 8 of the Sun is also known. From Fig. 3 it is

clear that the connection between x, y, z and X, Y, Z

is given by

X = x cos T cos 8x - sin Ty - cos T sin _z)
v

Y = y sin T cos 8x + cos Ty -- sin T sin 8z_

]Z=zsin3x +cosSz

(23)

Inverting Eqs. (22) yields

x = X cos T cos 8X ÷ sin T cos 3Y + sin 8Z

y = Y - sin TX + cos TY

z = Z- cos Tsin 3X - sin T sin 8Y + cos 3Z

(24)

Let us introduce polar coordinates 0o and 4,o, where

Oa is the geographical colatitude ranging from 0 to rr and

4,c is the geographical longitude ranging from 0 (at

Greenwich) to 2at (again at Greenwich). The other angles

of the ray path, _ and a in the old coordinate system, are

also partially affected by the coordinate transformation.

It is clear that y is unaffected; however a goes over into

aa. Presently, with the aid of Eqs. (23) and (24), we will

give the connections between the angles Oo, 4,0, ao, and

0o, 4,)0,and a. They are obtained by expressing x,y,z and

XYZ in their respective polar coordinates, and read

cos 0o - sin 3 sin 0o cos 4,0 + cos 8 cos 8o (25a)

sin 0o cos 4,6 = -cos T sin 8 cos 0o

+ cos T cos 8 sin 0o cos 4,0

-sin T sin 0o sin 4,0 (25b)

sin 06 sin 4,e, = --sin T sin 8 cos Oo

+ sin T cos 8 sin Oo cos 4,

+ cos T sin 0o sin 4,0 (25c)

These equations may be used to obtain 0o and 4,o once T

and 8 as well as the station location 0a and 4,0 are known.

The three equations (25) are of course not independent.

Any two of these equations may be used for the deter-

mination of 0o and q,o. It is at the discretion of the

programmer which equations to choose. Again, from

Eqs. (20) and (24), it is easy to find expressions which

determine the azimuth a once a6, the azimuth given in

an Earth-fixed system, is known. Here we display two

equations which determine cos a and sin a as long as

0o and 4,0 have been computed from Eqs. (25):

and

sin ), cos 0a + cos _ cos ao sin 0o = sin _ (sin), sin 0o cos 4,0 - cos v cos a cos 0o cos 4,0 - cos 7 sin a sin 0o)

+ cos _ (sin _ cos 0o + cos y cos a sin 0o)

sin 7 sin 0o cos 4)0

-- cos 7 cos eta cos Oa cos 4,0

-- cos _ sin aa sin ¢o = cos T cos 8 (sin y sin 0o eos 4)o - cos _, cos a cos 0o cos 4,o - cos _, sin a sin 4,0)

- sin T (sin _, sin 0o sin 4,0 - cos y cos a cos 0o sin 4,0 + cos _ sin a cos 4,o)

- cos T sin 3 (sin -/cos 0o + cos -/cos a sin 0o)

(26a)

(26b)
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It is now clear how to proceed in order to determine

the range correction, Eq. (19). Once the parameters of

the ray path are known it is not difficult to trace the

analysis back with the help of the equations given above

and actually compute the range correction for all con-

tingencies. Suppose the colatitude 00 and the longitude

@; of a station are known, suppose also that the universal
time T and the declination of the sun _ arc known at a

particular epoch.

It is then possible to determine the angles 0o and 40

with the help of Eqs. (25). Furthermore, the elevation

angle 7 and the azimuth at. of the ray path are also

known. It is then possible to determine a from Eqs. (26).

Once 0o, 40, and a (7 is obviously invariant) are ascer-

tained in the manner just described, Eqs. (22) must be

used in conjunction with Eqs. (19) and (15) to obtain
the range correction.

After having determined all geometrical quantities,

the three parameters of the ionosphere profile (the scale

height H, the altitude at which the maximum electron

density occurs, h ...... and the maximum electron density

N ...... ) must be determined. Faraday rotation measure-

ments determine the total electron content, in essence

the integral of expression (15) over the ray path between
the observing station and a satellite. Ionosonde measure-

ments determine N ...... and hmax (Ref, 8).

Once h ..... and N ...... are known, it is possible to deter-
mine the scale height H from the total electron content

as found from Faraday rotation measurements in con-

junction with Eq. (15). Concluding this section, we dis-

play a few plots based on the theory developed on the

preceding pages. Displayed are comparisons between

the original Chapman equation (Eq. 3) and the more

general expression, Eq. (15), as applied to the range

correction, Eq. (19). The azimuth a is set equal to zero in

all computations.

Figure 4 shows, for an elevation angle of y = 0 deg,

that for all solar zenith angles, except around 25 deg, the

range equivalent difference between Eq. (15) and Eq. (3)

is larger than I m. The Deep Space Network range

accuracy is specified to be better than 1 m.

It is therefore clear that the Chapman ionosphere is

inadequate. Figure 5 shows a similar comparison for an

elevation angle of 7 = 15 deg. The situation is somewhat

better, however; at a solar zenith angle x of 50 deg, the

difference between the exact expression of Eq. (15) and

the naive Chapman formulation is again an intolerable

meter and becomes worse for larger x.

Figure 6 displays the range correction as a function

of the elevation angle _ rather than the solar zenith angle

x as in the preceding figures. Here it is seen that for

large elevation angles (near zenith ranging) the discrep-

ancy between the Chapman formulation (Eq. 3) and the

exact Eq. (15)" is practically nonexistent. However, for

elevation angles below 30 deg, the difference between

the two formulations is again of the order of meters.

The conclusion is therefore inescapably that the Chap-

man electron density profile as given by Eq. (3) is in-

applicable when solar zenith angles are large (>40 deg)

and elevation angles are small (<30 deg).

eWithin the context of the underlying model.
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Topics in the Implementation and Application of Two-Station

Tracking Data Types
K. H. Rourke and V. J. Ondrasik

Tracking and Orbit Determination Section

Two proposed two-station tracking data processing techniques, direct data filter-

ing and differenced data filtering, are analyzed using advanced orbit determination

filtering methods. Both techniques are shown to perform comparably, yet direct

filtering methods prove to be more sensitive to error model assumptions. Two-station

tracking data are shown to be potentially superior to conventional tracking data

in determining Deep Space Network tracking station locations.

I. Introduction and Summary of Conclusions

The application of two-station tracking techniques to

interplanetary navigation has been treated in several
preceding DSN Progress Report articles (Refs. 1, 2, and 3). (1)

The articles present motivating analysis and orbit deter-

mination simulation results establishing two-station track-

ing techniques as an analytically practicable means for

improving interplanetary navigation performance when
conventional radio techniques are degraded by low (2)

declination geometry or poorly modeled spacecraft ac-
celerations.

This article treats two topics: (1) the alternatives

available in processing the simultaneous tracking data

(the data can either be used directly or be explicitly

differenced before it is processed to obtain orbit deter-

mination estimates), and (2) the use of two-station track-

ing to obtain more reliable station location determinations.

The general conclusions obtained from the analysis

of these topics can be stated as follows:

Directly processing simultaneous tracking data and

processing explicitly differenced simultaneous track-

ing data provide a feasible means for obtaining
reliable orbit determination estimates.

The direct processing method, although potentially

more powerful than explicitly differencing, places

increased demands on the problem of orbit deter-

mination filter design. Errors due to spacecraft

nongravitational accelerations are virtually elim-

inated by either technique. However, variations in

the design of the filters used in implementing the

directly processed data introduce significant varia-
tions in the effects due to other orbit determination

error sources, e.g., station location errors.
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(3) The use of two-station tracking data eliminates
station location determination errors resulting from

spacecraft unmodeled acceleration, and therefore

two-station techniques promise to be extremely

useful in obtaining accurate station location solu-

tions.

II. Directly Processing Simultaneous
Tracking Data

The proper treatment of the simultaneous tracking

data is discussed in Ref. 3, which points out that because

available geocentric information is deleted from the dif-

ferenced simultaneous data, better orbit determination

performance may result by directly processing the simul-

taneous data with an orbit determination filter that prop-

erly accounts for the noisy spacecraft dynamics (sometimes

referred to as process noise). The proper filtering is

required to assure that the affected geocentric informa-

tion is used without permitting the solution to become

highly sensitive to acceleration uncertainties. The con-

ventional batch orbit determination filters have only a

limited acceleration error modeling capability; thus the

proper treatment of the nondifferenced simultaneous data

requires advanced filtering techniques, namely, the use

of sequential filtering methods.

Although the advanced filtering methods can be ex-

pected to be less sensitive to process noise, their design

requires an explicit specification of the expected process

noise level. This introduces a possible sensitivity of the

filter performance to the process noise assumptions used

in the filter design. This possibility is investigated in this

article by comparing the treatment of simulated tracking

data--differenced and nondifferenced simultaneous range

and range rate---by a selection of orbit determination

filters, differing with respect to the process noise assump-

tions used in their design.

The results indicate that although the advanced filter-

ing methods prove effective in reducing the sensitivity

of the orbit determination errors to process noise, filter

performance does vary considerably with respect to the

process noise assumptions when the filter is operating

on conventional and nondifferenced simultaneous track-

ing data. The differenced tracking data are virtually

unaffected by process noise and, accordingly, the varying

filter designs produce only insignificant variations in filter

performance.

III. Filter Nomenclature

The following analysis consists of a comparison of

several sequential filters as they are applied to a set of

simulated tracking data. Before proceeding with the

comparison, it is appropriate to introduce several basic

concepts concerning sequential filters. The filtering al-

gorithm used in this analysis is described in detail in

Ref. 4. The algorithm is fundamentally equivalent to the

Kalman sequential filter (see Ref. 5), although it is

implemented in the numerically more stable "square

root" form. The Kalman filter is predicated on the follow-

ing linearized state dynamics and data models:

xk+i = ,b(k + 1,k)xk + P(k + 1,k)uk

z, = Hk xk + vk, k = 1, ..., NI (1)

where x_ is the state vector at a particular stage k, repre-

senting the value of a "to be solved for" parameter vector

evaluated at time tk. For instance, one may have

_x(t_)-

_y(tk)

_z(tk)
xk =

_x(t_)

__z(t_).

where 3x, 3y, 3z and 3x, 3y, 3z are displacements in the

components of spacecraft position and velocity relative

to a nominal position and velocity, and

_(t_+,,t_) = _(x(t_+l),..., _(t_l))
_(x(t_), ..., _(t_))

is the state transition matrix.

The vector xk may also include other solve for param-
eters such as station locations and spacecraft accelera-

tions. The uk is the process noise vector, a sequentially
uncorrelated stochastic variable with covariance function

= Q_a. (2)Euk uj

Process noise allows the introduction of statistical un-

certainty into the state dynamics, and as in the following

application, can represent the effects of random acceler-

ations on a spacecraft.

The data equation in Eq. (1) represents the navigation

data in linearized form, i.e.,
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z_ = (observed data - computed data), available at the

kth stage, and

0(observable)
H_ -----

OXk

The zk is a vector representing data taken over times

t, t_ < t < tk+l. The vk is assumed to be a sequentially
uncorrelated data noise vector with covariance function

Evkv_ = Rk_kj (3)

The statistical assumptions concerning Eq. (1) are fully

determined upon the specification of an a priori covari-

anee for the state vector; i.e.,

E xl x_ = el (4)

Given a model (Eq. 1) the specification of Eqs. (2), (3),

and (4) determines a minimum variance sequential filter
for estimating xk given the data z_, i = 1, ..-, k. A sequen-

tial formula (Ref. 5) for the estimate xk is given by

^xk+_= 'P(tk+a,tk) (X^k+ Kk[zk -- Hk Xk]), k = 1, '", N
(5)

where the filter "gain" K_ is given by

Kk = Vk H _ (HkPkH_ + Rk) -_ (6)

with the filter covariance of estimate errors Pk determined

by the following sequential relationship:

Pk+ l : ¢b(tk+ a,tk) (I -- KkH_)Pk (I - KkHk)T'_(t_+ l,tk) r

+ P(tk+ x,tk)Qk P(tk+ 1,tk)r , k = 1,..., N (7)

These formulas are determined initially by assumed
values for Pi and _'1.

Under the assumption that Qk = 0 for all k, the model

is easily reformatted into the familiar batch or minimum

variance parameter estimation form

z=Ax+e

where

Z

(i1).E_

\v./

and x may be any particular x_, k = 1,.", N since any

one state vector value now uniquely determines all other
values.

IV. Filter Performance and Q Magnitude

It is pointed out in Section III that the conventionally

implemented batch filter can be considered as a se-

quential filter with Qk _ 0, k = 1..., N. The restrictive

error modeling capability of the batch filter may allow

degradations in filter performance in certain applications.

Specifically, in the case of a spacecraft affected by ran-

dom accelerations, the conventional batch navigation

filters have exhibited significant performance degrada-

tions (Ref. 6.)

With the application of sequential filters, with Qk--_ 0,

a new problem arises: the selection of the proper sequence

of covariance matrices Qk, k = 1,..., N. This problem is

accompanied by the problem of selecting the proper se-

quence of data weights Rk, k = 1,'", N, a problem that
can be handled somewhat arbitrarily for the batch filter.

Often the general character of the /l and Q matrices is

reasonably well known with only their "magnitude" being
uncertain. That is, assume matrices R_ and Qk can be

specified so that "proper" specification of R_ and Qk en-

tails only the selection of scalars r and q so that

Rk = rRk and Qk = q(_k, k = 1, ..-, N

A simple yet important fact concerning the relation

between the values of r and q and filter performance can

be stated as follows: Filter implementation as specified

by the gain sequence Kk, k _- 1,..., N, is unaffected by

the absolute magnitudes of r and q, and depends only

on their ratio q/r. Thus, given R and Q, the variations in

filter performance (with respect to a fixed and not neces-

sarily known error environment) can be ascertained by

investigations of the effects of q(or r) variations alone.

This result can be demonstrated inductively by noting
that if

64 JPL TECHNICAL REPORT 32-1526, VOL. Xl



for particular functions F1 (') and G1 ('), then

by Eq. (6), and if

then

by Eq. (7).

V. Analysis of Simulated Tracking Data

The effect of varying filter Q levels is analyzed in the

following through the evaluation of sequential filters in

terms of their operation on simulated tracking data. The

simulated data were generated from rigorous orbit de-

termination analysis software and are contained in two
sets. The first contains simulated data residuals that re-

sult from a spacecraft being perturbed by random ac-
celerations with a standard deviation of 10 -12 km/s _ and

an autocorrelation time of 5 days. The data are the same
set used in Ref. 3: simultaneous and conventional track-

ing strategies applied to the encounter minus 30 days to

encounter, data arc of Viking '75 Mission B.

Data set II is data set I with data residuals due to

station location errors superimposed. The data-taking

strategies and spacecraft trajectory used in generating
the simulated data are detailed in Ref. 3.

The station location errors used to generate data set II

are presented in Table 1. The errors are arbitrarily se-

lected and are intended to be representative of the station

location errors present for the Viking mission in 1975-
1976. Note that the errors contain a bias and a random

component, the random component chosen to represent

apparent station location error effects such as timing,

polar motion, and residual data transmission media cali-
bration effects. The simulated differenced and nondif-

ferenced range rate and range residuals for data sets I

and II are shown in Figs. 1-4.

Four filters are applied to each of the data sets. Each

filter solved for only the position and velocity of the

spacecraft. The filters differ by their assumed Q levels.

The Q matrices are determined by the assumption that

the spacecraft experiences three-axis, spherically dis-

tributed piecewise constant accelerations, constant over

1 day and uncorrelated from day to day. The "Q level"

is specified by the assumed single-axis acceleration stand-

ard deviations, with the four Q levels being 0, 10 -12, 10 -11

and 10 -1° km/s 2. The zero-Q level filter processes the

tracking data as if it were a batch filter.

The results of the simulated data analysis are pre-

sented in Figs. 5-7. The results are presented in terms of

estimates and standard deviations of the B-plane param-

eter B'R, a position component particularly difficult to

determine for the Viking mission B. The errors are pre-

sented for varying data arcs, from epoch to encounter

minus 0.5, 5, 10, 15 and 20 days (encounter occurs at 30

days past epoch.) Since the simulated tracking data are

due solely to modeled tracking data errors, the estimates

(AB-R) are resulting navigation errors. The AB'R (Deep

Space Station (DSS)) are the estimate errors due to sta-
tion location errors alone (data set II minus data set I)

while the AB'R (attitude control acceleration (ATA))
are the estimate errors due to acceleration errors alone

(data set I.)

Figure 5 shows that, when using conventional data,
the effects of the acceleration errors on the B'R estimates

are significantly reduced with each increase in the Q

level. Note, however, that the Q-level variations pro-

duce large differences in the responses to the station

location errors, AB'R (DSS). This is a disquieting char-
acteristic in that the effects due to station location errors

are usually expected to be perhaps large but stable with

respect to various filter implementations.

Assessment of the general nature of these effects can-

not be obtained through analysis of a few simulated data

sets, as presented here; general results will require a

detailed filter covariance analysis. The implication of

these results are clear, however: that sequential filters

when acting on conventional tracking data can reduce

the effects of random spacecraft accelerations, at the

expense of variations in the sensitivity to station location
errors.

Figure 6 presents the filter performance results for

simultaneous range and range rate data. Reference 3

points out that although the simultaneous data improve
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station location error sensitivities (for near-zero declin-

ation spacecraft), the tight range specification greatly

magnifies the random acceleration effects. This effect is

well illustrated in Fig. 6. Note that the simultaneous

data filter sigmas are more sensitive to the Q level as-

sumptions than the conventional data filter sigmas. The

batch filter is seen to be very sensitive to random accel-

eration, yet sufficiently large Q levels essentially elimi-
nate the acceleration effects. The station location error

effects, unfortunately, show even larger variations with

changing Q level.

Figure 7 shows the differenced range and range rate

B'R sigmas and errors for the batch filter only. The

Q va 0 filters are not shown because their estimates are

virtually unaffected by Q level. Similarly, the error re-

sponses due to random accelerations are not shown since

they are all essentially zero.

One can conclude from these results that although the

simultaneous range and range data may be, in principle,

potentially superior to differenced data, initial applica-

tions using advanced filtering methods indicate that the

results are particularly sensitive to filter model assump-

tions and not clearly superior to processing the differ-
enced data with conventional filters.

VI. Station Location Determinations From

Two-Station Tracking

In the analytical analysis of a single pass of radio

tracking data performed in Ref. 1, it was shown how

the effects of unmodeled spacecraft (S/C) accelerations

can be expressed in terms of equivalent station location

errors. Thus it should be expected that unmodeled S/C

accelerations will degrade station location solutions ob-

tained from radio metric tracking data. Since, as shown

above, the effects of unmodeled S/C accelerations can

be essentially eliminated by differencing simultaneous

two-station data, such techniques may be useful in im-

proving station location solutions.

The use of two-station simultaneous tracking data, in

particular very long baseline interferometer (VLBI) mea-
surements, is by no means a novel approach in deter-

mining station locations. The general effectiveness of

such techniques is well established (see Ref. 7), and yet

the fact that these methods offer special advantages in

almost eliminating the station location solution sensitivities

to S/C accelerations is not widely realized. The S/C

acceleration errors may include gravitational as well as

nongravitational effects. For example, seemingly small

S/C position errors or gravitational model errors can

give rise to significant S/C acceleration discrepancies

during planetary encounter and satellite phases of a
mission.

To obtain some idea of the station location sensitivities

to the unmodeled S/C accelerations, a brief "consider"

covarianee analysis was performed for the Saturn por-

tion of a Jupiter-Saturn mission described in Ref. 8. This

analysis was based upon a batch filter which estimated

or considered the parameters shown in Table 2. For

comparison, parallel analyses were carried out for long
arc data sets which, as shown in Table 3, were identical

except that in ease 1 the simultaneous data are used

directly and in ease 2 the simultaneous data are explicitly

differenced before processing.

The effects of the random data noise on the station

locations solutions for cases 1 and 2 are expressed in

terms of the formal standard deviations given in Fig. 8.
The formal standard deviations associated with the dif-

ferenced data are typically four times larger than the

same quantities associated with the nondifferenced data.

It is expected that the differenced data formal statistics

will be larger, because, as mentioned previously, the dif-
ferencing procedure deletes the acceleration information.

Figure 8 also contains the sensitivities of the station

location solutions to errors in the planetary gravitational

constant (GM) and to a constant S/C acceleration in the

Sun-to-S/C direction. These sensitivities are represented

in terms of errors in the station location solutions pro-

duced from errors in GM and S/C accelerations of mag-

nitude 0.6 X 10 2 km3/s 2 and 0.5 X 10 -'e km/s 2, respec-

tively. These sensitivity bars represent the effect of the

particular error source only, and scale directly with

the magnitude of the error. An examination of Fig. 8

clearly shows that if the unmodeled accelerations are

present at the indicated levels, the long arc station loca-

tion solutions will contain catastrophic errors unless the
data are differenced.

Undoubtedly, it is possible to process conventional
data so that the station location sensitivities to unmodeled

S/C accelerations can be reduced from those shown in

Fig. 8. However, Fig. 8 does show that the use of dif-

ferenced data may be extremely useful in obtaining

accurate station location solutions and that the concept

certainly deserves a more detailed investigation.
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Table 1. Assumed station location errors

Error

Bias value, m Random
component

standard
California Australia Spain deviation a

Spin axis 1.5 - 1.5 1.5 1.0

Radius

Longitude 3.0 3.0 3.0 1.0

Z height 10.0 10.0 10.0 1.0

aThe random components are assumed to be due to gaussian

first-order markov processes with autocorrelation times equal

to 3 days.

Table 2. Estimated and considered parameters
for station location solutions

Estimated "Consider"
A priori "Consider" o

parameters parameters

S/C position 107 Constant 0.5 × 10 -iz km/s 2
SIC velocity 1 km/s acceleration in

Sun-S/C

direction

Planetary 1000 km

ephemeris

DSS 14, 42,
61 locations

Spin axis rs 1 m

Longitude X 2 m

Planetary GM 0.6 × 102 km3/s z

(2 × lO-Z% )

Table 3. Case numbers and data sets

Data a Data
Case Description (E - 120--* E -4-30) weight b Stations

1 3 stations p 3 m 14, 42, 61

p lmm/s 14, 42, 61

2 Differenced p 300 m 42

p 100 mm/s 42

Diff p 3 m 14, 42, 61

Diffp lmm/s 14,42,61

aFor exact tracking pattern, see Ref. 8. p = range, p = range-

rate, diff = explicitly differenced data.
bSee Ref. 8.
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Low Noise Receivers: Microwave Maser Development
R. Clauss, E. Wiebe, and R. Quinn

Communications Elements Research Section

A traveling wave maser, tunable from 7750 to 8750 MHz, has been completed

and tested in the laboratory. The maser is ready for installation on the 64-m-

diameter antenna at the Deep Space Communications Complex at Goldstone,

Calif. Gain, phase, and group delay stability were measured as a function of

magnetic field, refrigerator temperature, power supply voltages and large inter-

fering signals. Several features have been included in this maser to improve the

stability performance. A superconducting magnet provides a very stable magnetic

field. Push-push pumping results in complete pump saturation and reduced pump

fl'equency stability requirements. Low pass filters at a temperature of 4.5 K reduce

pump power radiation in signal waveguides.

The maser has 45 dB net gain and 17-MHz, 3-dB bandwidth with an equivalent

input noise temperature of 61/z K at 8415 MHz and 8½ K at 7850 MHz. Simul-

taneous operation at two frequencies, separated by up to 500 MHz, is available at

reduced gain.

I. Introduction

A new X-band traveling wave maser, ready for installa-

tion on the 64-m-diameter antenna at the Goldstone Deep

Space Communications Complex, is described in this

article. Improved stability performance (as compared

with previously used X-band masers; see Refs. 1, 2, and

3) has been measured in the laboratory. The results of

gain, phase, and group delay stability tests are reported.

II. Maser Description

The maser is a ruby-loaded comb structure similar to

one previously described (Ref. 2). The entire package is

shown in Fig. 1. A superconducting magnet provides a

magnetic field adjustable from 0 to 5500 gauss. A closed-

cycle helium refrigerator (CCR) is used to provide a

4.5 K operating environment for the maser comb struc-

ture and magnet. The klystron pump package contains
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two klystron oscillators and a power combiner for push-

push operation. The pump package has been described

previously (Ref. 4). The overall package weight (not

including the feed horn shown in Fig. 1) is 70 kg. The

maser may be operated in any position.

The maser and superconducting magnet are shown in

Fig. 2; the CCR vacuum housing and radiation shields

are not shown, and the magnet has been removed from

the maser. The waveguide-to-coaxial-line transitions at

the 4.5 K station (only the input side is shown) each

contain 11 element coaxial low pass filters. The filter

cutoff is 12 GHz. Reiection at the pump frequencies (18.4

to 19.6 GHz and 22.6 to 24.8 GHz) is more than 30 dB and

the voltage standing wave ratio (VSWR) between 7700

and 8800 MHz is less than 1.2 to 1. The signal waveguides

are of 0.064-cm-wall stainless steel with copper plating

inside to reduce signal frequency loss. The waveguide

low frequency cutoff is 6550 MHz.

Figure 3 shows the maser comb structure resting on

the 4.5 K station of the CCR. Indium gaskets are used to

provide intimate contact between the 4.5 K station, the

maser flange, and the superconducting magnet assembly.

Coils of wire, wound on the maser structure in a figure-

eight pattern, are used to adiust the maser gain by chang-

ing the magnetic field shape. The field-shaping coil is

controlled by a current-regulated power supply. The

persistent mode (Cioffi-type) superconducting magnet

and charging circuits were previously tested and reported

by Berwin, Wiebe, and Dachel (Ref. 5).

III. Gain, Bandwidth, and Noise Temperature

Net gain of 45 dB is available at any frequency between

7750 and 8750 MHz. The measured equivalent input

noise temperature is 10.5 K at 7750 MHz, 8.5 K at 7850

MHz, and 6.5 K from 8000 to 8650 MHz. Tuning across

this range is accomplished from the maser control racks.

The instantaneous 1-dB and 3-dB bandwidths (at 45-dB

gain) are 10 and 17 MHz respectively. Gain vs frequency,

with the maser tuned to 8415 MHz, is shown in Fig. 4.

Current through the figure-eight field-shaping coil is used

to adjust gain and bandwidth (measured values at a maser

center frequency of 8415 MHz are shown in Table 1).

IV. Dual Frequency Operation

Current through the figure-eight field-shaping coil can

be used to operate the maser at two frequencies separated

by as much as 500 MHz. Additional pump sources must

be used to pump both signal frequencies. The maser net

gain is between 17 and 22 dB during dual frequency

operation. Figure 5 shows the curves for maser net gain

vs frequency response during dual frequency operation.

V. Large Signals and Gain Compression

The maser was subjected to signal levels up to 1 mW

to determine gain compression (saturation) sensitivity.

Figure 6 shows the signal level (as a function of fre-

quency) which causes a 3-dB reduction in maser gain.

The maser was adjusted for a net gain of 45 dB at 8420

MHz prior to the test. Figure 7 shows maser gain com-

pression as a function of signal power level at the maser

center frequency. Power levels shown are at the maser

input.

Two large signals at the maser center frequency,

spaced 1 MHz apart, were used to saturate the maser. A

level of -28 dBmW at the maser input reduced the net

gain to unity. A spectrum analyzer was used to test for

mixing products; the system could detect signals 60 dB

below the level of the -28 dBmW test signals. No mixing

products were observed.

VI. Stability Measurements

Gain, signal phase, and group delay stability measure-

ments were made using a Hewlett-Packard network

analyzer. Figure 8 shows the gain and signal phase shift

vs frequency; a test signal was swept through the maser

bandpass to produce the curve. The reference channel

path contained a delay line of approximately 16 m equiv-

alent free space length. The maser group delay at 8415

MHz (at 45 dB net gain) was measured to be 63.9 × 10 -9 s

(equivalent free space length of 19.17 m).

Changes in maser gain, group delay, and signal phase

are caused by changes in the magnetic field, refrigerator

operating temperature, and pump frequency and power.

Figure 9 shows gain and group delay changes as the

refrigerator temperature is changed from 4.32 to 4.76 K.

Peak-to-peak signal phase changes were less than 5 deg.

The total phase slope change was 0.6 deg/MHz. The

measured data were recorded and are shown at two gain

levels; the figure-eight field-shaping coil was used to set
the specific gain values tested.

Large group delay changes are caused by magnetic

field shape changes. Figure 10 shows group delay changes

as the maser net gain is changed with the field-shaping
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coil. Figure 11 shows changes in gain and group delay

as a function of average magnetic field strength. A

1-gauss change in magnetic field produces a 2.5-MHz

maser center frequency change. The magnetic field for

8415 MHz operation is 4940 gauss. A 1-gauss change

results in a 0.25-dB gain reduction, a 0.40 × 10-9-s group

delay change (12 cm free space distance) and a 28-deg

signal phase shift. These changes emphasize the need for

a very stable magnetic field. Measurements in the labora-

tory and on a moving antenna show the superconducting

magnet to be 30 times tess sensitive to external magnetic

fields than permanent magnets previously used with S-

and X-band masers (Refs. 2, 3, and 6).

The effects of pump klystron changes are summarized

in Table 2. Gain, signal phase, and group delay changes

are shown as results of changes in klystron tuning, beam

voltage and current, and reflector voltage. Complete

pump transition saturation due to push-push pumping

(Ref. 7) causes the maser performance to be relatively

insensitive to pump frequency or power changes. Long-

term phase and gain stability records with the maser

operating in the laboratory (fixed position and constant

ambient temperature) showed no detectable gain change

(resolution 0.1 dB), 4 deg peak-to-peak signal phase

change, and 1.9 × 10-11-s group delay change (0.57 cm

free space distance) during a period of 12 h.

A summary of parameters affecting maser stability is

shown in Table 3. The listed variations in pump fre-

quency, power supply voltages, refrigerator temperature,

and magnetic field are based on data from maser systems

operating on the 64-m-diameter antenna at the present

time. The predicted instability combines laboratory test

data in this article with the previously measured maser

system data. The various instabilities are expected to add

in a random manner. The total expected gain, phase, and

group delay changes include the effects of antenna

motion during a 12-h time period. The total rms changes are
as follows: -+-0.12 dB gain, ±1.1 deg phase, and

__+0.08 × 10 -o s group delay.

VII. Conclusion

Laboratory test data show the new X-band maser per-

formance to be superior to previously used X-band

masers in gain, bandwidth, noise temperature, and sta-

bility. The use of push-push pumping, pump frequency
filters in the signal waveguides, and a superconducting

magnet is responsible for the improved performance.
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Table 1. Maser gain and bandwidth at 8415 MHz

vs magnetic field shape

Net gain, Bandwidth, MHz Field-shaping coil

dB ( 1 dB ) ( 3 dB ) current, mA

57 8 18 180

45 10 17 270

85 14 26 900

80 23 85 815

25 42 53 880

Table 2. Pump system stability effects with maser at 45 dB
net gain at 8415 MHz

Signal Group

Pump system Gain phase delay Equivalent free

change change, change, change, space path length,

dB deg 10 9 s cm

24-GHz klystron, -0.1 _+1.7 ±0.11 -+3.3

retune ± 10 MHz

19-GHz klystron, -0.2 +-_2.2 _0.09 _ 2.7
retune ± 10 MHz

24-GHz klystron, -0.9 -T 0.2 _+0.06 ± 1.8

beam voltage,
±30 V

19-GHz klystron, -0.7 <0.1 _+0.13 ±3.9

beam voltage,

±80 V

24-GHz klystron, -0.4 _ 0.8 -+0.12 ±8.6

reflector voltage,

±20 V

19-GHz klystron, -0.5 _ 0.3 ¥0.02 ;- 0.6

reflector voltage,

-+20 V
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Table 3. Predicted maser system stability characteristics for 12 h on 64-m-diameter antenna at 8415 MHz

Maser performance change

Variable parameter Parameter change Signal phase, Group delay, Equivalent free space

Gain, dB deg 10 -D s distance, cm

Refrigerator temperature ___0.005 K _ 0.08 <0.1 -T-0.04 _- 1.2

Average magnetic field ± 0.08 gauss - 0.01 ± 1.0 - 0.01 - 0.8

strength

Field-shaping coil ±0.2 mA _0.06 <0.1 T 0.06 -T- 1.8

current

24-GHz klystron pump ± 2 MHz - 0.02 ± 0,3 ± 0.02 ± 0.6

frequency

19-GHz klystron pump ± 2 MHz - 0.04 ± 0.4 ± 0.02 ± 0.6

frequency

Klystron power supply ± l V -0.04 <_0.1 ±0.01 ±0.3

voltages

Random combination of As above +__0.12 rms _ 1.1 rms ±0.08 rms ___2.4 rms

variable parameters
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Fig. 1. X-band traveling wave maser assembly 
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WAVEGUIDE 
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Fig. 2. Maser, superconducting magnet, and closed-cycle 
helium refrigerator 
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Fig. 3. Maser structure on 4.5-K heat station 
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Fig. 4. Gain vs frequency for maser at 8415 MHz 

Fig. 5. Gain vs frequency for simultaneous operation 
at two frequencies 
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Decoding the Golay Code

E. R. Berlekamp 1
Communications Systems Research Section

A procedure is described for correcting all patterns of three or fewer errors with

the (23,12) or (24,12) Golay code. The procedure decodes any 24-bit word in about

26 "steps," each of which consists of only a few simple operations such as counting

the number of ones in a 12-bit word. The procedure is based on the circulant view-

point introduced by Karlin (1969). In addition it is shown how the (24,12) Golay
code can be used to correct certain patterns of more than three errors.

I. Introduction

Recently there has been a revival of interest in the use

of binary block codes for deep space telemetry, since such
codes can be used as the "outer" codes in concatenation

schemes. These concatenation schemes are an attractive

method of providing the very low bit error probabilities

which will be required for the nonvideo science experi-

ments on future deep space missions.

One of the most powerful known block codes is the

Golay (24, 12) code, which is known to be capable of

correcting all patterns of three or fewer bit errors. In

Section II we describe a simple method of actually cor-

recting these errors; this makes the Golay code (perhaps

interleaved enough to deal with the bursts caused by the

"inner" channel) a very attractive candidate for the "outer"
code in certain concatenation schemes. In Section III we

show how the Golay code can be used to correct certain

patterns of more than three errors.

_Consultant, Department of Mathematics and Electrical Engineering,
University of California, Berkeley.

II. The Algorithm

It is known that the parity-check matrix of the (24, 12)

Golay code may be written as

._-I,IAi
where I is the 12 X 12 identity matrix and

A

11011100010 1
01101110001 1
10110111000 1
01011011100 1
00101101110 1
00010110111 1
10001011011 1
11000101101 1

11100010110 1
01110001011 1
10111000101 1

11111111111 0
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Let/_ denote the 11 X 11 upper left submatrix of A. A is a

circulant matrix, each row of which is obtained by a cyclic

right shift of the previous row. If the rows and columns of

/_ are labeled from 0 to 10, then

" t i if i - i is 0 or a quadratic residue modulo 11
A_. j = _0 if / i is a quadratic nonresidue modulo 11

From this, it is easily seen that A -1 = A t.

Each codeword of the (24, 12) code may be written

as a row vector C, which satisfies the equation HCt = O.
If C is transmitted and R is received, then the channel

error pattern is E = R - C. The syndrome of R is the

12-dimensional column vector s t defined by

s t = HR t

Since HE t = HR t - HCt = HR t, the syndrome of the

received word is the same as the syndrome of the error

word, and this is the sum of the columns of the H matrix

corresponding to the error locations.

Let u,, u_, • • •, ul_ denote the 12 unit row vectors in 12

dimensions (e.g., u,_ ={001000000000]); let A1, A2, "" ", A1_

denote the rows of A, so that

A1

A2

A=

A12

t tand let A13, At4, • • • , A_, denote the columns of A, so that

t t
A = [A_3IA1, [ ... [A_,]

The syndrome s t = HE t may now be represented as

s= _ E_u,+ _ E_A_
i=l _=13

Similarly,

Ats = AtHE = [At I I] "E

whence

Ats =

12 24

_] EiAi + _ Eiui-_2
i=l i=13

If we now assume that IE]_3, then at least one of the

following must be true:

Case I:

I[E_:,,EI,, •., ,Ez,]I =0, Isl _'_3,
i=l

Eiui = S

Case II:

] [E13, E_4, • • " , E24]] = l, there exists aj, 13_i_-_24
for which

Is + AjI_ 2, _ Etui = s + A_
i=l

Case III:

I[E_,E=,'.',E_] I=0, IsA[ = IA's'l _3,

24

Eiui-_z = sA
i=13

Case IV:

I[E_, E._,, • •
for which

I sA + As

, E_] ] = 1, there exists ai, 1 _ / _-_ 12

24

_2, Y_ E_u___z ----sA + Aj
i=13

Hence, the decoding can be accomplished simply by

weighing each of these 26 vectors:

s,s+Ax, s+A2, " • " ,s+A_2,

sA, sA+Ax, sA+A2, " " • ,sA+At_

For example, suppose s = 100011010010. Since Isl > 3,

we compute s + A1 = s + 110111000101 = 010100010111.

Since Is+A_l >2, we compute Is+A_l =6>2, Is+A_ I --
6>2, Is + A4I =8>2, Is +A_I =6>2, Is + Aol =
8>2, Is +A_I =4>2, Is +Asl =4>2, Is +Agl =

10>2, Is+A_01 =8>2, Is+A_,l =6>2, Is+A_l =6>2.
It is now clear that if IEI -3, then [ [E_, Ez,", Ex2] I > 1

and hence I[E_, E_,, - • • , E__,]I -_ 1. So we continue

by computing Ats t = sA = 100110100111, IsAI = 7 > 3,

sA + A1 --- Ol0001100010, IsA + Aa I = 4 > 2, I sA + A2 [ =

6>2, IsA+ A_I =6>2, ]sA +A4I =6>2, IsA + A_I =
8 > 2, [sA + AGI = 4 > 2, sA + A7 = 000100010000. Since

[sA + A71 = 2, E_ = 1 and E = 0000001000000000100010000.

Most of the decoding effort is counting the weights of

the 26 relevant 12-bit vectors. For this reason, this decod-

ing algorithm is particularly well-suited to computers
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which have this instruction built in, such as the CDC 6400,

6500, 6600, and 7600. If programmed on a machine which

is unable to count the weight of a 12-bit word in a single

instruction, the easiest way to obtain this quantity is

usually to break up the 12-bit word into pieces (say 2

pieces of 6 bits each or 3 pieces of 4 bits each) and obtain

the weight of each piece by looking it up in a table.

IIh Decoding More Than Three Errors

The Golay code has 212 codewords of length 23, and

since (203) + (_3) + (_3) + (_) = 2_-12, every coset contains

one word of weight--_: 3. However, the extended Golay

code, which has 21_ codewords of length 24 has (_4)

+ (_4) __ 21: cosets of odd weight and another 21_

(_) + (_4) + 1_ (_44) cosets of even weight. It is thus pos-

sible to correct b_ of the (244) possible error patterns of

weight 4. Some of these words of weight 4 correspond to

short bursts. Even though the space channel itself is mem-

oryless, the convolutional code will occasionally make mis-

takes which the Golay code will see as error bursts. For

this reason, short bursts of weight 4 are more probable

error patterns than long bursts of weight 4.

The sum of any two words of weight 4 from the same

coset is a codeword of weight 8. Hence we may gain a
considerable amount of information about which words

of weight 4 are correctable and which are not by studying

the codewords of weight 8.

Since there is exactly one codeword of weight 8 which

has ls in any given five positions, the total number of

codewords of weight 8 is 24 X 23 X 22 × 21 X 20/8 b( 7

× 6 X 5 X 4 = 3 X 11 × 23. Each codeword of weight 8

has 23 distinct cyclic shifts. The codewords of weight 8 lie
in 33 sets of 23 codewords each. Furthermore, each code-

word of weight 8 can be mapped into 11 different code-

words by the permutation C (x)_ C (x 2') mod (x 23 ÷ 1),

for i = 0, 1, • . • , 10. Under this permutation, there are

only 3 equivalence classes of codewords. The 11 members
of each class are listed in Table 1.

The most probable error patterns of weight 4 are those
which are due to the sum of one or more short bursts. The

solid burst of length 5 occurs in codeword number 23 of

Table 1. By inspecting this word, we see that the solid burst

of length 5 in positions 0, 1, 2, 3, 4 lies in the same coset as

the pattern of three isolated errors in positions 7, 10, and

12. Hence, if all error patterns of weight _ 3 are cor-

rected, then a solid burst of length 5 cannot be corrected.

There are five codewords which contain solid bursts in

positions 0, 1, 2, 3. These words may be found as cyclic

shifts of lines numbered 1, 22, 23, 23, and 26 of Table 1.

Since no codeword of weight 8 contains two disjoint solid

bursts of length 4, all solid bursts of length 4 may be cor-

rected by the extended Golay code of length 24.

A burst of length 5 and weight 4 must be of one of the

following three types: 11101, 11011, 10111. Type 11101 is

contained in Table I codewords numbered 2, 6, 22, 23, 24,

Type 11011 in codewords numbered 1, 6, 11, 14, 23, and

Type 10111 in codewords numbered 1, 2, 5, 12, 23.

The most probable error patterns of weight four are
those which are due to the sum of one or two short bursts.

These types of error patterns and the codewords of Table 1
which contain them are as follows:

Error type Reference numbers of Table 1 eodewords

111 plus 1 1, 3, 4, 5, 6, 11, 12, 17

21, 22, 23, 24, 26, 28, 33

11 plus 11 1, 3, 4, 6, 8, 9, 10, 11, 12, 14

17, 21, 25, 26, 27, 29, 30, 31, 32, 33

An examination of the conflicts between the goal of

correcting 111 plus 1 and 11 plus 11 reveals the following

dangerous codewords through positions 0, 1, 2:

Reference
Codeword

number

0,1,2 7,8,9, @, @ 4

0,1,2, @, @ 16,17,18 4

0,1,2, 4,5, @, 18,19 6

0, 1, 2, 10, 11, 13, 14, @ 11

0,1,2, 5,6, 12,13, @ 33

This shows that any pair of two sets of double adjacent

errors can be corrected and that one can also correct any

error pattern of the type 111 plus 1 (i.e., a solid burst of

length 3 and an additional isolated error) unless the iso-

lated error follows the burst by 6, 9, 10, 13, 17, 15, or 19

digits. If the isolated error follows the burst of length 3

by 9, 19, or 15, the syndrome is the same as for a pair of

bursts of length 2; if the isolated error follows the burst of

3 by 13, 17, 6, or 10, then there is ambiguity with another

error pattern of the same type.
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Table 1. One codeword of weight 8 from each of the
33 cyclic equivalence classes

Reference Lengths (origins)
number Positions of ls in the codeword of solid bursts

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

0 8 12 13 7 5 10 11

0 16 1 3 14 10 20 22

0 9 2 6 5 20 17 21

0 18 4 12 10 17 11 19

0 13 8 1 20 11 22 15

0 3 16 2 17 22 21 7

0 6 9 4 11 21 19 14

0 12 18 8 22 19 15 5

0 1 13 16 21 15 7 10

0 2 3 9 19 7 14 20

0 4 6 18 15 14 5 17

0 2 4 6 5 i0 11 oo

0 4 8 12 10 20 22 oo

0 8 16 1 20 17 21 o0

0 16 9 2 17 11 19 oo

0 9 18 4 11 22 15 oo

0 18 13 8 22 21 7

0 13 3 16 21 19 14 oo

0 3 6 9 19 15 5 o0

0 6 12 18 15 7 10 oo

1 13 7 14 20 oo

2 3 14 5 17 oo

0 12

0 1

0 1 2 4 3 12 7 10

0 2 4 8 6 1 14 20

0 4 8 16 12 2 5 17

0 8 16 9 1 4 10 11

0 16 9 18 2 8 20 22

0 9 18 13 4 16 17 21

0 18 13 3 8 9 11 19

0 13 3 6 16 18 22 15

0 3 6 12 9 13 21 7

0 6 12 1 18 3 19 14

0 12 1 2 13 6 15 5

4(10) 2(7)

3(22)
2(5) 2(20)

3(10) 3(17)

3(22)

3<21) 2(2) 2(16/

2(18) 2(22)
2(0) 2(15)
2(2) 2(19)

3(4) 2(14) 2(17)

3(4) 2(lO)
2(22)
2(16) 2(20) 2(0)
2(16)
2(22)
3(21) 2(7)
2(13)

2(5)
2(6)
3(12) 2(0)
4(0)

5(0)
3(0)

2(4) 2(16)
4(8) 2(0)

2(8) 2(22)
3(16)
2(8) 2(18)
2(15) 2(22)
2(6) 2(12)

2(0) 2(18)
3(0) 2(5) 2(12)
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Weights Modulo 8 in Binary Cyclic Codes
R. J. McEliece

Communications Systems Research Section

A new technique is provided for computing the weights modulo 8 in binary

cyclic codes. These codes have proved to be the most important for GCF error

detection�correction, and the method described will frequently aid in the detailed
analysis o[ such codes.

I. Introduction

In this article we will obtain an improved method of

calculating the value of the weights modulo 8 in a binary

cyclic code. Such codes are the most important class of

block codes known. For example, the (32, 6) block code

used in the high-rate telemetry system, the (1200, 1167)

BCH error detection code used on the GCF/NASCOM

lines, and the (23, 12) Golay code currently being studied

for use on a concatenation scheme for MJS77 are all essen-

tially binary cyclic codes. Weight information is a first

step toward analyzing the error correction properties of
a code.

If C is an (n, k) binary cyclic code, denote its weight

enumerator by

A(Z) = _ A_Z _
i=O

A_ being the number of words of weight i in C. Knowl-

edge of A (Z) is vital for evaluating the performance of the

code C, but often C contains so many codewords that a

direct enumeration is not possible. Thus indirect methods

must be adopted. In Section II we present a technique

which can usually be used to evaluate A (Z) modulo
Z s - 1. This information can then be added to other

known information about A (Z) in the attempt to calculate

A (Z). An example of the technique is given in Section III.

II. The New Technique

Let c -- (c0, cl, • " • , c,_1) be a codeword from C. We

assume n is odd. Then the Mattson-Solomon polynomial

of C,

n - 1

s(x) = _ s,x'
i =0

has the property that cj = s(0J), where 0 is a primitive
nth root of unity in some extension of GF (2). The n coe_-

cients s_ also lie in an extension of GF (2), and s_ = s_
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(subscripts mod n). Let us write the weight of c in its

binary expansion

w (c) = rl (c) + 2r_ (c) + 4r, (c) + • • •

where p2r (c) = 0 or 1.

Let us first show that 1"1(c)_ so (rood 2). rl (c)-_

w(c)_Co + C_ ÷ • • " + cn_l (mod2). Thus

n-1 rt-1 _-1 _-I

r_(c)_- Z _ s_O#_ E s, E 0 's(mod2), (1)
j=o i=o i=o j=o

Now since for i=:1,2, • • - ,n--1 0_isazeroof

-- _ X j
X-- 1 y:o

the inner sum in (1) is zero unless i = 0. Thus 131(c)_-nso_

So (mod 2).

The simple argument above was extended by Solomon

and McEliece (Ref. 1) to 1_._and to 1"4.They assumed that

P_ (c) = 0. This assumption involves no essential loss of

generality, since in a binary (n, k) cyclic code with n odd,

either all words have even weight, or else exactly half

have odd weight, the words of odd weight being the

mod-2 complements of the words of even weight. Under

this assumption, Solomon and McEliece proved

r2(c)_=?_{s,sj:i<i,i+i_O(modn)}(mod2) (2)

To give their expression for i",, we must first introduce

some notation. Let P_ represent the set of unordered selec-
tions, with repetitions permitted, of r elements from the

set {0, 1, 2, • • • ,n - 1}. Let po be the subset of P_ of

those selections whose entries sum to 0 (mod n). Thus if

n = 3, P4 contains 15 selections but po contains only 0000,

0012, 0111, 0222, and 1122. If a = (a_a_a:_)eP_, define

s_ = s_s%s%s_,. Then Solomon and McEliece proved that

11_(c) _ _ A_s_ (mod 2) (3a)

where the coefficients A_ are all zero, except that A, = i in

the four mutually exclusive cases

,_ = (i, i, ], k) i, ], k distinct (3b)

a = (i, i, i, j) i, j distinct (3c)

= (i, i, n - i, n -/) i, i distinct (3d)

a = (i, i, n -- i, n - i) and n _--- 1 (mod 4). (3e)

Our object here is to show that (3a) can be greatly sim-

plified. First, the sum in (3a) over the terms (3e) is, when

n _ 1 (rood 4),

Y_s_s____ Es_sn-a _---r_ (c) (mod 2)

from (2). Next the sum over the terms (3d) is

$i$n-1 Sj$n-j,

i<i

But this is just the second elementary symmetric function

of the terms s_, a e P?...

We now come to the terms (3b) and (3c). If a is a term

in (3b), s_ = s_,sisz = s.,isjsk, since as mentioned above s_,=

sz_. Similarly in case (3c) s_ : _sj = s2isisj. Of course these
terms could "collapse" further if, for example, 2i _ j

(rood n). Thus every term s, from (3b) and (3c) "collapses"
to a term of one of the forms s_s_s_ with a < b < c and

a+b+c_0(modn) ors_s_witha<banda+b_0

(rood n).

Thus we are led to define Qr as the set of unordered selec-

tions, without repetition, of r objects from {0,1, • • ",n- 1},

and QO as the subset of Q_ of those selections whose entries

sum to 0 (mod n). We have seen that every term aeP ° from

(3b) or (3e) collapses to a term in either QO or QO. Let us

now see how many elements in po can collapse to a par-

ticular element in Q0 or Qo.

First consider Qo. A typical term is (i, i) with i < i and

i + ]_ 0 (mod n). We easily see that the only terms in po

which collapse to (i, ]) are:

' ' ,)' 4' 2'

,_ _' 4' 2'

' 2' 2' as

The last of these terms is not of form (3b) or (3c) and so

does enter into the sum (3). The other two terms are dis-

tinct elements of p o, either of class (3b) or (3c), and since

s_ + s_2_ 0 (mod 2), we see that the terms of po which
collapse to terms in QO do not contribute to the sum (3).

Finally we consider those terms (3b) and (3c) of P_

which collapse to a term in QO A typical term in Q0 is
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(i, i, k) with i < i < k and i + j + k _ 0 (mod n). The terms

in po which collapse to (i, i, k) are then

' 2' i, = _1

i i k) =i, 7' 7'

k k(, ,  )=o3
Now al, a2 and _ are all distinct elements of po belong-

ing to either (3b) or (3c). And since s_1 + s% + s% = sisjsk,
we see that the sum in (3) over the ds in classes (3b) and

(3e) is E {s_:aeQ°}.

Finally let us define ,,(_) (c) as the ith elementary sym-

metric function of the terms s_, aeQ°r . We have then proved

that the formula of Solomon-McEliece (3a) can be re-
written as:

r, (c) _- a_8' (c) + a_2) (c) + (1 + nl) a_-o)(c) (mod 2)

(4)

where n = n,, • • • n-on_l is the binary expansion of n.

This is our main result. In Section III we give an example

of the use of (4).

III. An Example

We will illustrate our result on the (17, 8) cyclic code

whose check polynomial xs + x _ + x* + x a + I is irreduci-
ble mod 2. It follows from the Mattson-Solomon results

that every codeword ceC has sj = 0 except possibly for

] e {1, 2, 4, 8, 16, 15, 13, 9} = K; i.e., i _ 2m (mod 17) for

m = 0, 1, '' • ,7. Furthermore for each such codeword

there will exist a unique xeGF (28) such that s-o, = x 2".

Now we are ready to apply our formula for r,. The first

term, a_3) (c), will involve only those selections (i, j, k) from

Qo, all of whose elements lie in the set K. But it is easily

verified that no such tuples (i, i, k) exist. Thus a__) (c) = 0
for all ceC. The next two terms are the first two elemen-

tary symmetric functions of the nonzero terms {s_: _.Qo};

i.e., {SlSl6 , 8.2s15, s4813, 8_s9} but since so, = x 2" for some

xeGF (2 s) this set is (x 1_, x _7"2,x _'4, x_7"s}. If x =/=0, x 2'-_ =

x xr'_ = 1 in GF (2s), and so x _ in fact lies in the smaller

field GF (2"). In fact for every yeGF (24) - {O}, there are

exactly 17 values of xeGF (2 a) - {0} such that x.7 = y. For

every codeword c corresponding to such an x, then

r, (c) = + (v),

where Z" + a_ (y) Z _ + a2 (y) Z z + as (y) Z + _, (y) =

(Z - y) (Z - y_) (Z - y') (Z - yS) is the field polynomial

for y.

Similarly, but more easily,

r (c) = *,(v).

Finally all that is needed is a list of the field polynomials

of the 15 nonzero elements of GF (2'):

Number of

Polynomial distinct roots P, rz

Z _ +Z+I 4 0 0

Z,+Z ,_ +1 4 I 1

Z_ + Z:' + Z'_ + Z + I 4 0 1

Z' + Z _ + 1 2 1 0

Z, + 1 1 0 0

Thus we see that in the code C there are, apart from the

all-zero word,

85 = 17" 5 words with weight _ 0 (mod 8)

68 = 17" 4 words with weight _ 2 (rood 8)

34 -- 17" 2 words with weight _ 4 (mod 8)

68 = 17" 4 words with weight _ 6 (mod 8)

Since the BCH bound assures us that there are no words

of weight less than 5 or greater than 12, the complete

weight enumerator for C is

A (Z) = 1 + 68Z" + 85Z s + 68Z _° + 34Z x'
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Reducing the Complexity of Calculating Syndromes

for Error-Correcting Codes

L. H. Harper and J. E. Savage 1

Communications Systems Research Section

The calculation of the syndrome--the first step performed by all decoders of

linear codes--can require a number of logical operations which grows faster

than the square of block length. It is shown that the complexity of syndrome

calculation can be reduced for many linear codes by a factor of log of the code

block length and that Hamming codes can be decoded with combinational ma-

chines having a number of logic elements which is linear in block length.

I. Introduction

It has been suggested that error-correcting coding be

used to improve the reliability of Ground Communi-

cations Facility (GCF) data transfer. However, ff such

coding is to be used, the problem of real-time decoding

must first be dealt with; this problem will be especially

acute in the 50-kbits/s wideband mode. This note shows

how decoding complexity can be decreased for many

important coding schemes.

Every linear (parity-check) code has a parity check

matrix H associated with it, If the code words xl,..., x_

are N-tuples over GF(q), then H is an N X (N- K)

matrix over GF(q) where K is the number of information

digits needed to represent the code word and N - K is

the number of dependent digits in a code word. Also,

1Division of Engineering, Brown University, and consultant, Com-

munications Systems Research Section.

M = q^ and every code word satisfies the equation

xiH=O

Let y be the received sequence when x_ is transmitted

and let e -- y - xi be the error sequence associated with

x_. The syndrome s associated with y and e is

s--yH--eH

and s is a compact reflection of the channel errors.

In this note we show that the calculation of s can be

reduced for many codes by making use of the structure

of H. We begin with an examination of Hamming codes.

II. Hamming Codes

The parity-check matrix H,_ of the Hamming code

(Re[. 1) is N -- 2_ - i by m dimensional binary matrix

which contains all binary m-tuples as rows except for the
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zero m-tuple. It is easily shown that each column of H,_

contains 2 '_-1 ones, so that the straightforward calculation

of each digit of s would require 2 "_ 1 _ 1 modulo-2 sums

of pairs for a total of m(2 m-1 - 1) additions. This number

grows as N log2 N. We shall show that this number can
be reduced to linear in N.

Theorem 1

The calculation of syndromes for a Hamming code of

length N---2 "_ -1 can be accomplished with 2[2 '_ -

(m + 1)] mod-2 additions, and at least 2"_- 2 additions

are required.

Proof

There is no loss of generality in assuming that the

rows of H_ (which are m-tuples) are listed in order of

increasing integers which they represent in dyadic form.

Form H* from H,_ by adding the zero m-tuple as the

first row. For example,

H*=

0001
001

0011
010

0101
011

0111
H:_= 1 0 0

1001
101

1011
110

11101

11111 111.

Note that H*÷I can be formed from H* as indicated be-
low:

n_m+l

0

0 H_

• t
0

oo.o....

1 )
• H_

• /
1

)
2"

m

The number of modulo-2 additions to multiply H,,,+_

on the left, Pro+,, is the number to multiply with H*+I.

But, this is twice Pm plus the number to add each half of

columns 2 through m + 1 of H*+I, namely, m plus the

number to multiply by the first column. The recursive

construction of H*+_ shows that the bottom quarter of

the second column of H*+_, namely, the lower half of the

first column of H*, contains ones, so that the partial sum
of the 2"_/2 last components of y computed for the sec-

ond column of H*+I can be used to compute its first
column. Using partial sums computed for the third and

later columns, the first column can be computed with an
additional m additions.

Then,

Pm+1 = 2P,_ + 2m

and it is easily shown that P2 = 2. This is a linear dif-

ference equation with homogeneous solution c2 m and

particular solution -2(m + 1). Therefore,

P,,_ = c2 '_ - 2(m + 1)

and c = 2 for P2 = 2. Or

P,,, = 2(2 '_ - (m + 1)).

To show that at least 2m - 1 additions are necessary

to compute s, we observe that in computing (y_, y2,...,

y2m)H_ the sums yz, y.,+_ + y..,2, y22+_ + ... + y.,:_,...,
y..,,, +... + y_,,,_ must be formed and that these are

sums of overlapping variables. Also, each sum except
the last is added to other partial sums. Therefore, the
number of additions is at least

l;t-1

y_ 2J-' +2 '_-1-1---2 '_-2
i=l

This completes the proof of the theorem.

This reduction by a factor of logz (N + 1) in the com-
plexity of syndrome calculations can be carried over to

some BCH codes, as shown next.

III. Binary BCH Codes

A t-error-correcting BCH code (Ref. 1) over GF(2)
has a parity check matrix

n i...1]O_3 Ot21-_

where 1 and a are elements of GF(2 m) and N is the

nmltiplicative order of (t.
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Theorem 2

The syndrome s of a binary, t-error-correcting BCH

code can be computed using 2t(2 '_- (m + 1)) mod-2
additions when a is primitive and the multiplicative

orders of a3, as,..., a2t-1 are all relatively prime to N =

2 '' - 1, the block length of the code.

Proof

Each element of GF(2 '') can be represented by a

binary m-tuple. Under the conditions of the theorem,
each element a, as,...,a2t-1 is primitive in GF(2 m) and

each column contains all the nonzero m-tuples. Invoking

Theorem 1, the result follows.

Under the conditions of the theorem the number of

mod-2 additions to form H directly, without using partial

sums for various columns, would be mt(2 _-1 - 1). Thus,

a savings of a factor of about m/4 can be achieved.

When the conditions of Theorem 2 are not met, the

bound of Theorem 2 may not apply. The interested

reader can satisfy himself that 47 additions will be

needed, using techniques of this note, for the (15,7) BCH

code while the bound of Theorem 2 would predict 44.

In this case, a 3 is not primitive in GF(24).

IV. On Decoding Hamming Codes

Hamming codes can be decoded with a logic circuit

containing a number of logic elements proportional to

the block length N, as is now shown. The Hamming

codes correct all single errors, and decoding is done by

changing the ith received digit if s is equal to the ith
row of H.

The circuit which generates correction signals from

a syndrome vector computes all but one of the terms of

.... .... % where • denotes AND, (c_, cz,the form s_'l .s 2- s,_
0 = _, the• ",c,_) is a binary m-tuple, and s_ = si, s_

INVERSE of si. The only term not computed is s_ "... • s_.

These terms are known as minterms, and it can be shown

by induction that they can all be realized using 2(2 _ - 1)

logic elements of the type AND, OR, INVERSE (Ref. 2).

Thus, with a total number of logic elements propor-

tional to N, syndromes can be computed and correction

signals generated.

V. Conclusion

The reductions in decoder complexity demonstrated

in this note might also be achieved for many other codes.
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Efficient Generation of Statistically Good Pseudonoise

by Linearly Interconnected Shift Registers
W. J. Hurd

Communications Systems Research Section

Some new algorithms are presented [or generating pseudorandom noise utiliz-

ing binary maximal length linear recursive sequences of high degree and with

many nonzero terms. The ability to efficiently implement high degree recursions

is important because the number of consecutive bits which can be guaranteed to

be both linearly and statistically independent is equal to the degree of the

recursion. The implementations are by interconnection of several short shift reg-

isters in a linear manner in such a way that different widely spaced phase shifts

of the same pseudonoise sequence appear in the stages of the several registers.

This is efficient both in hardware and in software. Several specific algorithms are

subjected to extensive statistical evaluation, with no evidence found to dis-

tinguish the sequences [rom purely random binary sequences.

I. Introduction

Digitally generated pseudorandom noise and analog-

generated random noise are extensively used in various

research, development, simulation, testing and system

evaluation and calibration activities. Digital pseudonoise

has basic advantages over analog-generated noise, in its

repeatability and inherent stability. Therefore, analog
noise signals are frequently generated by converting

digital noise to analog, and digital computer applications

rarely use analog-generated noise.

This paper presents some efficient new algorithms for

generating digital pseudonoise. The algorithms are effi-

cient because a large number of new pseudorandom bits

are generated at each iteration of a computer imple-

mentation, or at each clock pulse of a hardware imple-

mentation. The pseudonoise has good statistical

properties because the several simultaneously generated

bits are the corresponding bits from different phase shifts

of the same maximal length linear recursive sequence.

These sequences, also called maximal length shift register

sequences, pn-sequences, and m-sequences, are well

known to have good randomness properties (Refs. 1 and 2).

Some of the key features of the new algorithms are:

(1) The algorithms are efficient in both hardware and

software implementations. Besides being indepen-

dently useful in the two applications, this has the

advantage that specific proposed hardware imple-
mentations can be efficiently simulated and evalu-
ated before hardware is constructed.

(2) In software applications, the new algorithms are
more efficient than existing algorithms for pn-
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sequences with comparable randomness properties.

Some efficient algorithms are known for particularly

simple recursions, but the resulting sequences have

poor statistical properties which the new algorithms
avoid.

(3) Wideband pseudo-gaussian analog signals can be

easily generated from hardware implementations.

This is accomplished by the analog summation of

voltage waveforms corresponding to the several

new bits generated at each clock pulse. A noise

generator has been constructed utilizing this prin-

ciple, in similar manner to an earlier digital

gaussian noise generator described elsewhere

(Rcf. 3).

(4) The statistical properties of the sequences have

been evaluated extensively, with no evidence found

to distinguish the sequences from purely random

sequences of independent, equally likely, binary
numbers.

This paper is divided into three main sections. First,

some of the properties of pn-sequenees are reviewed, and

standard implementations are discussed. This serves as

a motivation for the development of the new algorithms.

Second, the new algorithms are described in general,

and specific implementations are discussed. Finally, the

results of extensive statistical evaluation of the pseudo-

noise are presented, and the sequences are shown to have
favorable randomness characteristics.

II. Motivation for Use of pn-Sequences

A binary linear recursive sequence is a sequence (Xk}

of zeroes and ones satisfying a linear recursion of the form

Xk : _ a_DiXk (1)
z.=l

where D is the delay operator, i.e., D_X_ = Xk-i, the al

are zero or one, and addition is modulo-2. The degree of

the recursion is the largest value of i for which as -- 1,

and the maximum possible period of a sequence from

a linear recursion of degree n is 2" - 1. These maximal

length linear reeursive sequences, called pn-sequences,

occur when the polynomial

P(D)= I + _ a_D i
i=l

is primitive over GF(2).

A. Randomness Properties

PN-sequences are known to have many favorable ran-

domness properties (Refs. 1 and 2). Some important prop-

erties common to all pn-sequences are:

(1) For degree n, all of the 2" - 1 possible nonzero

n-tuples, or sets of n consecutive bits, occur equally

often. This means that binary numbers formed

from disjoint subsets of the same n-tuple are in-

dependent and jointly uniformly distributed.

(2) All phase shifts are essentially uncorrelated, when

correlation is defined as the number of places in

which the phase shifts agree, less the number in

which they disagree.

(3) Under suitable conditions, sets of n-tuples from

different phase shifts of a sequence are uncorre-

lated, when considered as binary numbers (Ref. 2).

These properties indicate not only that pn-sequences

are good sources of random numbers, but that it may be

possible to utilize different phase shifts of the same se-

quence as essentially independent noise sequences.

The properties we have discussed so far apply equally

to all pn-sequences, but other properties cause some

sequences to appear more random than others. In par-

ticular, consider m-tuples for m greater than the degree

n. Since some of the bits of the m-tuples are linearly

related, they are not statistically independent. Fortu-

nately the statistical dependence is usually not observed

unless the recursion is a particularly simple one. Lind-

holm (Ref. 4), however, has investigated the weights of

m-tuples, i.e., the number of ones. In a purely random

sequence, the weights would be binomially distributed

symmetrically about m/2, but there is significant devia-
tion from this when the recursion is a trinomial or

divides some trinomials of low degree.

The above properties of pn-sequences indicate that

the randomness properties tend to improve with the de-

gree and complexity of the recursion. They also indicate

that bits from several phase shifts of the same sequence

might be as useful as the same total number of bits from

one phase shift. As we shall see, this has implementation

advantages.

B. Well-Known Implementation

PN-sequences are easily generated one bit at a time

in binary shift registers, as shown in Fig. 1. The input

to the first stage is labeled Xk, and the outputs of the
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n-stages are Xk-1, X_-2 ..... Xk-n, the values of Xe at the n

previous instants of time. As the time index advances

from k to k + 1, the state of each stage of the register

assumes the value of its input. The register shown sat-
isfies the trinomial recursion

X_ = Xk-_ + X___ (mod 2) (2)

so that its characteristic polynomial in the delay oper-
ator is

P(D)=I+D+D" (,nod 2) (3)

The resulting sequence {X_.} is a pn-sequence if P(D) is

primitive.

One can generate several phase shifts of the same

sequence by several straightforward methods, using the

cycle-and-add property. This property is that the rood-2

sum of any two phase shifts is another phase shift. Thus

one method is to sum the outputs of any two stages to

yield a new phase shift. Another method can be used

if the input Xk depends on several, say N, of the previous

n states. Then Xk is implemented in a series of N - 1

two-input modulo-2 adders, and the output of each adder

is a different phase shift. Both of these methods suffer

the implementation deficiencies that the complexity in-
creases with the number of terms in the recursion and

the number of phase shifts generated, and that they are

not amenable to software systems. They have the sta-

tistical deficiency that the various phase shifts are simply

related, and therefore cannot be considered statistically

independent, even though they must be uncorrelated.

In software, it is fairly easy to generate n successive

bits of a degree n recursion in a few machine instruc-

tions, provided that the recursion is a trinomial, as was

done by Kendall (Ref. 5) for n = 47. Unfortunately, the

algorithm complexity increases with the number of terms
in the recursion, and trinomial recursions result in sta-

tistical dependencies which sometimes lead to erroneous

simulation results, as observed by Heller (Ref. 6). Fur-

thermore, the method is efficient only when n is less than

the number of bits in one or two computer words, be-

cause of the shifting operations which are required.

In summary, the considerations above indicate that

there is a need both in hardware and software for

algorithms for efficiently generating long period pn-

sequences with complex recursions. The efficiency is to

be gained by generating several new bits simultaneously,

either consecutive bits from a sequence, or bits from

several different phase shifts of a sequence. It is the latter

approach which we develop here.

III. Sequence Generation by Interconnection

of Shift Registers

The algorithms presented here utilize the linear inter-

connection of several shift registers to simultaneously

generate several phase shifts of the same pn-sequence.

For a degree n recursion, the n bits in memory at any

one time are not consecutive bits from one pn-sequenee,

but are bits from several phase shifts. Nevertheless, they

are linearly independent, and they retain the important

statistical property that all disjoint subsets, considered

as binary numbers, are independent and jointly uni-

formly distributed. This follows because all of the 2n - 1

possible nonzero states of the n bits occur equally often.

The algorithms are efficient both for hardware and

software. The theoretical minimum of n stages of shift

register and still fewer gates are required in hardware

for a polynomial of degree n, and one new word is gen-

erated at each clock pulse. In software, approximately

12 machine instructions are required to generate one new

word of pseudorandom bits, even though the degree of

the polynomial may be much higher than the word

length. Since the degree determines the number of con-

secutive bits which are guaranteed to be statistically

independent, a number of successive independent com-

puter words can be generated without sacrificing effi-

ciency.

Figure 2 shows a simple linear interconnection of

three shift registers. The registers are labeled 0, 1, and

2, with inputs at time k of X_ °) , X_ 1), and X_'-'). At time k,

the first (leftmost) stages of the registers store the input

values at time k - 1, i.e., X_"_)I, X_)I, and X_)x. The shift-

ing is from left to right, so, in general, stage ] of register i

stores the value X__)j at time k.

In the particular example of Fig. 2, register 0 has three

stages, and registers 1 and 2 have four stages. The input

to each register is the modulo-2 sum of the output of

the last stage of the same register, and the output of one

s_age from the previous register. Thus we can define

the recursion by

X(ki)----X (i) + X (i-_) i ---0,1,2(rood3) (4)
k-q i k-di_ 1 '
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where q_ is the number of stages in register i, and d_-i

is the stage of register i - 1 which forms an input to

register i. We can also write

X_ o = Dq_ X_ _ + D'_-IX o-_), i -- 0,1,2 (mod 3) (5)

and this set of equations is easily solved in general for

the characteristic polynomial in the delay operator as

N-1

N-1 _ dl

e(D) = n (1 + Dq,) + D
i=O

(6)

where we have now generalized to N registers, labeled

0,1,2,..., N - 1.

For the particular case of Fig. 2,

P(D) _- 1 + D 3 + D s + D 8 + D 11 (7)

which is a

calculation

of states of

defined by

primitive polynomial, as can be verified by

or from tables (Ref. 7). Thus the sequence

the stages of each register is the pn-sequence

P(D), or by the recursion

X_ = X_-3 + X_-_ + X_-s + Xk-1, (8)

C. Final Configuration

To achieve simple implementations, it is necessary to

restrict the register interconnections to some regular

form. However, forms which have each input depend on

only two register stages, as in Fig. 2, are probably not

satisfactory, because they tend to suffer some of the sta-

tistical deficiencies of trinomial recursions, even though

trinomial characteristic polynomials do not typically
result.

The next alternative could be to have each input de-

pend on three register stages. Most configurations in

which each input depends on at least three register

stages would probably be satisfactory statistically. How-

ever, for implementation considerations, we have chosen,

instead, to have the first stage of each register depend

on only two inputs and to modify the connections to the

last stage of each register so that its input is the sum

of its own output state and the state of the preceding

stage. This operation is known as toggling, because the

stage toggles, i.e., changes state, whenever its input is 1.

This is the natural operation of a T flip-flop, or a J-K

flip-flop with the two inputs the same. In delay operator

notation, this stage performs the operation

D

I+D

instead of the operation D.

The final configuration consists in general of N reg-

isters of the form shown in Fig. 3. Register i has q,

stages, the first q_ - 1 of which shift, and the last stage

of which toggles. Thus the stage outputs of register i
at times k are

D qi

DX(__, D_X(__ ..... D q'- _X(_i_ and _X_ o

The input X(_o to register i is the modulo-2 sum of the
last stage of register i- I (rood N) and stage di_2 of

register i - 2 (mod N). Thus the system is defined by the

equations

X_O- D q_-I
1 + D x_-l) + D'q-2X_ _-2_

(9)
i=0,1,...,N--1 (modN)

D. Specific Realizations

In order to find specific systems corresponding to

primitive polynomials, it is necessary to calculate the

polynomials for various values of the system parameters

and to test for primitivity. This is best done with a com-

puter, and programs have been written for this purpose.

To test for primitivity, one computes D r (mod e(D)) for
all integers r which divide 2n - 1. The polynomial P(D)
is primitive if r -= 2_ - 1 is the smallest value of r such

that D_ 1 (mod t"(D)). This test cannot be performed
for all degrees n, because the factors of 2 n - 1 are not

known in general. Furthermore, the average number of

computations required to find a primitive polynomial

increases as n4. The highest degree for which a primitive

polynomial system of the special form was found is 310.

Table 1 summarizes some of the realizations found

which have primitive characteristic polynomials. This

table is restricted to equal length shift registers of length

q, with degree n = Nq. The di are also restricted. They

are allowed to assume only two values, di--do for

i = 0,1 .... ,No- 1, and d_ = dN-1 for i = No,No + 1 .... ,

N- 1. In other words, the first No of the d, are equal

to do, and the rest are equal to dr- 1. Column T in Table 1

gives the number of nonzero coefficients in the resulting

polynomial, i.e., it is a T-nomial.
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Many more primitive configurations can be found by

lifting the restrictions on the q_ and di.

E. Software Implementation

For computer implementation, realizations using equal

length registers are most useful, especially when the

number of registers is equal to the computer word length.

If all registers are of length q, then a q word array of

memory is used, as shown in Fig. 4. The last word of

the array stores the first bit of each of the N shift reg-

isters, the next to last word stores the second bit of each

register, etc. Thus word q - J ÷ 1 stores

DJ X_O, DJ X_1_..... DJ X_ _-1_

for j = 1,2 .... , q - 1, and word 1 stores

Dq D q X(1} D'l
1 T _ x_°_' _ _ '"" 1 + D x_-I_

We can envision shifting words upwards through the

array, with toggling of the first word.

The computer program must accomplish three things,

in principle simultaneously. First, it must selectively

merge the various words to form a word

D_oX(_°_, DdoX_}, . . ., DaN_ _X_t¢-_)

and modulo-2 add the proper shift of this word to the

proper shift of word 1 to form the new word q. Second,

it must form the new word 1 by modulo-2 adding words
1 and 2. Third, it must shift the old words q,q - 1 .... ,3

into q - 1, q - 2 .... ,2. In practice, it is more efficient to

generate a new array of q words at one time, i.e., the N

registers are each shifted q places, yielding n new pseudo-
random bits.

Several specific algorithms have been programmed for

the XDS Sigma 5 computer. The statistical properties of

these sequences are evaluated in Section IV, and a

FORTRAN program for degree 288 with N = 32, q = 9

is described in the Appendix. In this particular program,

the registers have been permuted so that the input to

register i depends on registers i - 5 and i - 10, instead

of on registers i - 1 and i - 2. The program execution

time is 37 _s per 32-bit number.

F. Hardware Applications

The realizations for small n and N are useful in hard-

ware applications. A pseudo-gaussian noise generator
has been constructed for N -- 12, n = 60 using only 20

integrated circuits. For this implementation, the d, for

i = 0,1 .... , N - 1 are 8,2,1,4,2,4,8,2,1,4,4,1, and the poly-
nomial has 25 nonzero coefficients. To transform from a

binary to a pseudo-gaussian sequence, voltage wave-

forms corresponding to the 12 new bits generated at

each clock pulse are summed in a resistor network and

then filtered, in a similar manner to the noise generator

of Ref. 1. The advantage to the new method over the

earlier noise generator is that less hardware is required

so that the cost is substantially less. Furthermore, the

pseudonoise properties of this noise generator are very

good, as will be shown next.

IV. Evaluation of Statistical Properties

Extensive chi-squared tests were performed on the

sequences generated by computer programs for algorithms

of degrees 310, 288, 160, and 60. The program for degree

60 implemented the same system as the hardware noise

generator described above. The other three cases are the

polynomials with the largest numbers of nonzero coef-

ficients given in Table 1. These were evaluated to deter-

mine their suitability for use as standard computer noise

generator algorithms. The sequences were tested to see

whether computer words treated as binary numbers were

jointly uniformly distributed in several dimensions, and
the weight distributions of m-tuples were tested for being
binomial for various m. The results of these tests showed

no evidence to distinguish any of these pseudonoise

sequences from truly random binary sequences.

A. Tests for Jointly Uniform Distributions

The results of the tests for uniformity are summarized

in Table 2. To illustrate the use of this table, we explain
the entries in each column of the second row. The first

column identifies the case as corresponding to the degree

60 polynomial, or the one implemented in hardware.
The second and third columns indicate that this test was

for joint uniformity in three dimensions, with 999 degrees
of freedom. This means that the data were sorted into

I000 bins, and since all bins were of equal size, the bin
dimensions are 0.1 × 0.1 X 0.1 if the numbers are con-

sidered to be between 0 and 1. The next column indicates

that 25,000 data samples were used to compute each

value of x2. In this case, 25,000 sets of three numbers

were required. The last five columns indicate that 100

tests were run; the values of x2 which should be exceeded
99% and 95% of the time were exceeded in all but 0

and 10 tests, respectively; the values which should be
exceeded 1% and 5% of the time were exceeded 0 and

8 times, respectively.
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In order to search for any possible anomalies in the

joint distributions of nonadjacent words on the sequenees,

the data samples used for the tests of Table 2 were not

all adjacent words in the sequences. For a k-dimensional

test, the first five sets of k words were adjacent on the

sequence, the k words of the next five sets were spaced

two words apart, the k words of the next five sets were

spaced three words apart, etc., until the spacing between

the words of last five sets of k-words was equal to the

number of tests divided by five.

For all cases, the number of observances of large and

small values of x2 are very close to the expected values

of these events for independent and uniformly distributed

random numbers. In particular, for the 2965 tests per-

formed on the degree 288 polynomial, a total of 20 values

of x2 were less than the 99% value, and 25 exceeded the
1% value. This is, in both cases, less than two standard

deviations from the mean value of 29.65, since the stan-

dard deviation is 5.42. Considering the extensiveness of

the tests performed, sequences whose statistics differed

significantly from the statistics tested for would almost

certainly result in many more large values of ×2 than

expected. Thus there is no evidence to distinguish the

sequences from purely random sequences.

B. Test of Weight Distribution

For the same four algorithms, the distributions of the

weights of m-tuples of consecutive bits were tested for

being binomially distributed, as would be the case for a

purely random sequence. This test was performed be-

cause pn-sequenees generated by trinomials will fail this
test.

Each m-tuple considered was made up of the bits of

an integer number of words, where word length cor-

responds to the number of shift registers in the corre-

sponding hardware implementation. Thus m is always a

multiple of 12 for the degree 60 case, 31 for the degree

310 case, and 32 for the other two cases.

Table 3 summarizes the results of these tests. The

columns in Table 3 are the same as in Table 2, except

that the second column indicates the lengths of the

m-tuples. Various m-tuple lengths up to more than 1200

were tested for each of the four algorithms. In all cases,

the number of times x2 exceeded the 1% and 5% values

was approximately as expected. Also, the numbers of
values less than the 95% values were near the means.

The only unusual result was that only one value of x2
was less than the 99% value. We attribute this to the fact

that the 99% threshold used was not the correct value for

the actual observables, because the observables are only

asymptotically chi-squared distributed. The deviation of

the actual distribution from chi-squared is significant for

small values. For example, a truly chi-squared variate

can take on the value zero, whereas our observables had

a minimum value greater than zero. This was because

the observation space was divided into bins with non-

integer expected numbers of occurrences. Since the num-

bers of observed values of x e less than the 95% values

were close to the mean, we do not consider the sparsity

of extremely small values to be significant. The overall

conclusion drawn from the weight distribution tests is

that there is no evidence to distinguish the bit sequences

from truly random sequences of independent, equally

likely bits.
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Table 1. Some primitive polynomial configurations

n N q T d o dn_ 1 N O

20 4 5 7 1 2 1

20 4 5 7 1 3 1

20 4 5 11 1 4 1

60 10 6 29 2 9 3

60 15 4 81 2 1 2

80 16 5 25 4 3 7

155 31 5 79 2 9 2

160 32 5 29 2 1 3

160 32 5 57 2 1 5

288 32 9 81 6 7 13

310 31 10 95 5 8 2

310 31 10 119 5 6 3

310 31 10 93 3 8 4

310 31 10 117 6 9 4

810 31 10 97 2 7 5

310 31 10 97 5 2 5

Table 2. Chi-squared tests for uniformity

Polynomial Number of

degree dimensions

Degrees of Samples Number

freedom per test of tests

Values less than Values exceeding

x2 x 2 xg, xX_99 95

60 1 1023 25,000 100

60 3 999 25,000 160

60 Totals 260

160 3 999 25,000 225

288 1 999 25,000 250

288 2 960 25,000 750

288 3 999 25,000 750

288 4 1295 25,000 750

288 5 1023 25,000 465

288 Totals 2965

310 8 999 25,000 280

1 7 1 6

0 10 0 8

1 17 1 14

2 9 1 11

2 20 3 7

8 46 11 37

5 30 4 24

4 37 5 30

1 19 2 19

20 152 25 117

2 20 2 10
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Table3. Chi-squared tests on weight distributions

Polynomial

degree

m-tuple

length

Degrees of Samples Number

freedom per test of tests

Values less than Values exceeding

2 2 x_l Xo_5X99 X95

60

60

60

60

60

60

60

60

60

160

160

160

160

160

160

160

288

288

288

288

288

288

288

288

310

310

310

810

810

310

310

60

120

180

240

300

600

1200

1800

32

96

160

320

640

1280

32

96

160

320

640

640

1280

31

155

310

620

1240

1240

Totals

Totals

Totals

Totals

26 25,000 25

36 25,000 25

44 25,000 25

50 25,000 25

56 25,000 25

76 25,000 25

106 25,000 25

126 25,000 70

245

18 25,000 25

32 25,000 25

42 25,000 25

58 25,000 25

78 25,000 87

108 25,000 25

162

18 25,000 25

32 25,000 25

42 25,000 25

58 25,000 25

78 25,000 25

88 100,000 25

108 25,000 25

175

17 10,000 25

37 10,000 25

52 10,000 25

70 10,000 25

96 10,000 10

116 50,000 10

120

1 2 1 2

0 0 1 2

0 2 1 1

0 1 0 0

0 2 0 2

0 0 0 1

0 0 1 2

0 2 1 4

1 9 5 14

0 2 0 0

0 1 1 2

0 0 0 0

0 0 0 0

0 5 1 2

0 1 2 8

0 9 4 7

0 1 0 0

0 0 1 1

0 1 0 4

0 1 0 1

0 0 0 1

0 2 0 2

0 2 1 1

0 7 2 10

0 1 0 0

0 1 0 8

0 0 0 3

0 1 1 2

0 0 0 0

0 1 0 0

0 4 1 8
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Xk  kl

X k = Xk_ 1 + Xk_ n = (D + D n) X k

Fig. 1. Shift register of degree n with linear feedback

Ddi-2 x_i-2)

SHIFT REGISTER i
ir

D qi X_i)qk - 1 STAGES _--_

T .
i q.-i i._1 i

• • • ID ' X_'JJ,-_ FLIP- I
.oP I

Dqi°/__D X_ i-1)

Fig. 3. General register of final configuration

I
SHIFT REGISTER 0 J

I I I
|

Ix_o_ I×_o_ I×co_ I
Jk-_ k-2

I
SHIFT REGISTER I J

I 111
|

IxC/ Ix(,I Iol I(,/ Ik-, _-2ixk-3_

SHIFT REGISTER 2 J

I
k___,_ '_ak___, i

Fig. 2. A simple linear interconnection of three shift registers

SHIFT SHIFT SHIFT

REGISTER 0 REGISTER I REGISllER N-I

COMPUTE! Dg Dg x_l) Dq x(N--l}woml _ x_°) _ • • i_-6_

WORD2 Dq-1 X_ 0) D q'l X_ 1) • • D q'! X_ N-I]

i
WORD q°l

i

i

WORD q o_, • • o_,,

Fig. 4. Computer realization of shift registers
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Appendix

XDS Sigma 5 FORTRAN Subroutine

The XDS Sigma 5 FORTRAN subroutine for the poly-

nomial of degree 288 is listed in Fig. A-1. The program

utilizes the machine dependent in-line code features of
XDS Extended FORTRAN IV and is therefore not com-

patible with other machines. Usage is as follows:

(1) CALL PN288(N): Nine pseudorandom integers

are returned in array N. Their
distribution is uniform from

--2 '_' to 231--1.

(2) CALL PNI(M): One new number is returned
in M.

(3) CALL PIX(N): The state of the nine words of

memory determining the next

(4) CALL PAX(N):

(5) CALL PIXJ(M):

(6) CALL PAXJ(N):

output are returned in array
N. These are not the same as

returned by a CALL to PN-
288.

Packs the nine words of mem-

ory from array N.

Returns the value of a pointer

used by PN1.

Sets the pointer.

A general random number package utilizing this basic

algorithm has been written by R. Winkelstein and will

be reported on in a future article.
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1:
2|
3:

5:
6:
7S
81
91

10|
111

13S
1,W,l
15'
161

18:
191
20|
211
22I
23I
2,W,!
251
26I
27|
28'
29|
30:
31Z
32:
33:
3_|
351
36I
37Z
38'
391
_01

_,3_

,W,71

501

S

$2

S
S
S

S
S

.q
S
S
S
S

R
2D

3D

_0

SUBROUTINE :_2_St_SuT)
DIME_SIBN _(18)aN@LT(OI1)
DATA JmNW119ag/
DATA (k(I)JI=l,9)/_O3652t_39$.lE3_7_5_%a_qRE3_$452al_78598785*

1-888521_32j_63_g_521a-123_7_$258J.21_G35_,1865_235181
BAL_2 2S
L_a3 N*9
LCI 9
STM_3 _UT

J'19
RETURN

LI_3 -9

LW_5 =X_9#kS_gkk !
LS_ N*l_a3
SCS_ -5
E6R_ N
SCS_ -5
STW_4 N*18,_
LWa5 N
EBR_5 N.10_3
STW_5 N
BIRd3 1S
LC! 8
L_ NmtO
STM_4 N*I
B _2

ENTRY _NI(NI)

J,10
BAL_2 _S

NI_N(J)
JmJ+%
RETURN
ENTRY _AX(_BUT)

N(1)_N_UT(I,$)

J,$9

RETURN
ENTRY _IX(N_UT}

Dfl 40 l'NWa_a-_
NBUT(I,%},_(1)
RETURN
ENTRY PAXJ(J_U_)
_-MAXO(JBUT_NW*I}

RETURN
ENTRY PIXJ(J@UT)
JBUI'J

RETURN
END

D7 INT8 R_

D6 INTB R_ 5N M_SK

A_S fk Ra, kR_ pRBPERLY SHIFTED
A_S IN R++ FRm=FRLY SHIFTEO
ANS f_ _.ARRAv, LBWER PART

_EW n9 IN_5 N

Fig. A-1. XDS Sigma 5 FORTRAN subroutine for the polynomial of degree 288
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NASTRAN Data Generation and Management

Using Interactive Graphics
M. S. Katow

DSIF Engineering Section

B. M. Cooper
Science and Engineering Computing Section

For effective use of the NASA Structural Analysis (NASTRAN) computer sys-

tem, the input bulk data must accurately model the structure to be analyzed and

result from a minimum of time and money expended. A method of using an

interactive graphics device to generate a large portion of the input bulk data with

visual checks of the structure and the card images is described. The generation

starts from GRID and PBAR cards. The visual checks result from a three-

dimensional display of the model in any rotated position. By detailing the steps,

the time saving and cost effectiveness of this method may be judged, and its

potential as a useful tool for the structural analyst may be established.

I. Introduction

The generation of NASTRAN input bulk data to cor-

rectly simulate or model a large structure to be analyzed

usually consumes much time. Sketches and/or drawings

are necessary to define the GRID numbers connected by
structural elements identified with Element Identification

(EID) numbers and their property identification (PID)

numbers. After the constraints are organized, a list for

keypunching must be prepared. After the cards are

keypunched and input to the computer, more time is

required to debug the input data for compliance with the

NASTRAN formats before an answer is output. De-

bugging procedures usually employ plotting capabilities

available in NASTRAN to provide visual checks of the

structural model. Normally, further checking follows by
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noting values in the load vectors generated by gravity

loadings, the coordinates of the center of gravity, and

symmetry or equating of the single-point constraint

values to the input load vectors.

Besides the schedule time deadlines, the total cost of

the analysis must be considered. Procedures or processes

that can reduce the time of preparing input data invari-

ably reduce costs. If during these processes the correct-

ness of the model can be raised to a high level before

input to a computer, the NASTRAN computing costs can
be reduced.

At JPL, with the installation of the UNIVAC Advanced

Graphics Display System to the UNIVAC 1108- EXEC 8

time-sharing computer used for scientific computing pur-

poses, the development of the use of interactive graphics

to generate and check NASTRAN bulk data has pro-
ceeded.

II. Configuration Description

The UNIVAC Advanced Graphics Display System is

composed of two major units: the display controller mini-

computer (Type 1557) and the display console (Type

1558). The purpose of the minicomputer is to provide

computing and control capabilities to handle, internally,

display functions and programs that are tailor-made by

the user to meet NASTRAN bulk data requirements. It
also serves as an interactive device to the UNIVAC 1108

processor to provide additional large-scale processing

capabilities.

The display console consists of a cathode ray tube

(CRT) display, keyboard, display control, and light pen.

The unit is designed for display of grid points, line

vectors, alphanumeric characters, and special symbols

necessary for the NASTRAN program. It features a high-
speed, high-precision CRT to accommodate the wide

variety of graphic displays.

The basic configuration of the system interfaces di-

rectly with an input/output channel of the UNIVAC

1108 processor. The basic storage for the minicomputer
contains 8192 locations.

III. Graphics Programming Library

A primary purpose of the UNIVAC 1108 - EXEC 8

computer and Graphics Programming Library (GPL) is

to provide easily manipulated data structures that de-

scribe and define a displayable image for the 1557/1558

graphics minicomputer/display console.

The GPL permits both the graphics entities which con-

stitute the images to be displayed and nongraphic asso-

ciated or managerial data to be defined and stored in the

data base. Entities of both types can be grouped to form

single higher level or parent groups capable themselves

of being grouped to form still higher-level groups, giving

rise to a hierarchically organized data structure.

A large central data base is required to support the

NASTRAN package; thus many automatic facilities are

included in the system to make management of these
data both convenient and efficient. In order to maintain

the integrity of the data file, it is accessible only through

the GPL subroutines. These subroutines permit total

flexibility in defining, manipulating, and displaying

images on the display screen.

Interaction control tables (ICTs) provide a unique

approach to the problem of defining and accomplishing

the processing to be performed in the minicomputer.
These tables handle the function of basic attention hand-

ling, analyze and change both its data base and display

file, and send and request information to and from the

central computer as required. The ICTs are a hardware-

independent, interpretively executed, interactively ori-

ented language in which processing performed by the

minicomputer is programmed by the user.

IV. The Use of Interactive Graphics

A. Structure Development Program

In the normal analysis, the preparation of the input

bulk data cards starts with the GRID cards. The grid

point numbers of these cards are defined on a sketch or

drawing. Also, from these pictures the coordinate values

are ascertained directly or by calculations on a desk

machine. Normally, these coordinate values are described

within the precision limits of the computer, although in

the real structure there are larger errors. These errors can
be evaluated as to their effects on the answers from the

analysis as one more separate problem in structural

analysis to be considered. Because of the symmetrical

nature of many structures, precise coordinate values

usually aid in debugging as well as enhancing the use of

partial section analysis, thereby reducing the time and

cost of analysis.
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For this method of interactive graphic adaptation, the

GRID cards are keypunched to suit NASTRAN format.

For this discussion we will assume that only CBARs are

used, so PBARs are keypunched next.

At this point, these NASTRAN cards are input to a

catalog file in the 1108, and the 1557/1558 unit through

GPL is activated so that the CBARs can be generated or

completely listed and keypunched for observation and

updating by interactive graphics. The NASTRAN

graphics package consists of three subprograms: a struc-

ture development subprogram for the CBAR generation,

a rotation subprogram for visual demographics, and a

data edit subprogram for card image alterations. Each

subprogram can be used in a stand-alone mode or can be

subroutinized to operate interehangeably.

The graphics tube face layout has been designed from

a human engineering standpoint, with speed and effi-

ciency coordinated at each user/hardware operation. The

tube face is divided and overlayed by windows, each

representing a segment of the visual data structure. One
window contains a "menu" which informs the user of his

current status in the program. These window and menu

concepts can be seen in Fig. 1.

In the left window, the grid point identification num-

bers from the catalog file are listed in columns. Above it

are listed the PID numbers of the PBARs. To the right

side of the grid ID, there is space for displaying the gen-
erated CBAR data.

The right window of the tube displays, as point vectors,

the grid point locations initially as they appear normal to

the XY plane. Then by pressing either X, Y, or Z on the

keyboard, the views in XY, XZ, or YZ planes, respectively,

can be displayed.

The light-sensitive pen is then pointed to the first GA

of the desired CBAR. The screen responds by displaying
a ± "local indicator" next to the listed GA as well as the

point vector on the right window. When in succession,

the GB, PID, and GO are selected via light pen inter-

action; then a "C" in the keyboard enters the CBAR,

which is shown by an entry in the CBAR connection list
data in the left window and a directional vector between

the point vectors of the GA and GB. The formats de-

scribed are shown by a photograph of the screen after

some CBARs have been developed (Fig. 1).

At any time during this development of the structural

model the rotation subprogram may be called and the

model can be visually checked from any oblique angle.

Figure 2 shows the model of Fig. 1 viewed by rotations

around the X and Z axes of 30 deg each. Figure 3 shows

the complete development at a -30-deg angle about the
X axis.

B. Rotation Subprogram

This monitor (a 1557 software operating system) per-
forms three-dimensional rotation on the two-dimensional

screen, which gives the user complete control of visual

structure demographics: rotation about any axis, at any

incremental angle, at any speed. This combination of
control leads to "animated" movement in three dimen-

sions for visual analysis and to hard copy graphics of
the structure.

If at this time the card images of a GRID or CBAR

require changes, the GRID data may be edited by a call

to the data edit subprogram. A typical display is shown

in Fig. 4. By use of the keyboard, specific changes can

be made in the card image inputs.

C. Data Set Edit Subprogram

The data set edit routine can be utilized as a stand-

alone procedure to update an existing NASTRAN data

package or as a subroutine in a structure development

production.

The data set edit routine presents the "card image" run

stream by paging data and control messages across the

screen at the user's discretion. On each page, the user has

control of editing options and can direct the program.

The user can change a card image, delete a card image,

and add a card image which represents a CBAR or

PBAR, while maintaining all structure credibilities con-

nected to the member unless entirely deleted.

The user can switch the rotation monitor on and visu-

ally check his structure, flag a member, and automatically

have the program page to the card image representing the

member for further analysis and editing.

To prevent loss of completed connections, a page of 25

CBARs is automatically stored in the user's FASTRAND

file. In turn, the next 25 CBARs may be entered. This

program has restart capabilities in case of computer

failure or "current' 'analysis changes.

When the visual checks of the interactive graphics

output signal a good set of GRID, CBAR, and PBAR
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cards, the final exit can be made by requesting the 1108

to punch out the edited cards as presently programmed,

or, in the 1108, it is possible to have data files read into

a catalog file so that an immediate NASTRAN run can
be made from the remote terminal used for the 1557/1558
unit.

V. Advantages of Interactive Graphics

The replacement of the normal listing of CBARs and

subsequent keypunching with the use of interactive

graphics will save time. However, the greatest values

should result from the opportunity to make intermittent
three-dimensional visual checks of the structural model.

The analyst can ensure the accuracy of the model as well

as provide an opportunity for study to optimize the

geometric arrangement.

As the system is now working, using many satellite ICT
routines and self-contained monitors with the minicom-

puter, minimum demand time is required of the 1108.

The current cost of working the system is approximately
$50/h. This includes "roll-in/roll-out" of the three moni-
tors and full user utilization in a demand environment.
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I 31 61 93

2 52 62 94
3 33 63 95
4 34 64 96
5 35 65 97

6 36 66 98
7 37 67 99
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13 43 74 05
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15 45 7& 07
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i9 49 SO II
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21 51 82 113

22 52 25 114
23 53 S4 115

I 24 54 S6 11625 55 27 117
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I 27 57 29 I19
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CBAR CNC LST

GA GB PID GO F

123 I- 2 50 3 2

24 2- 3 50 1 2

25 3- 12 50 I 2
2& I2- 46 50 3

27 46- gO 50 I2 2

28 gO- IIO 50 46 2-
29 llO- Ill 50 $0 2

30 IO0- Ill 50 IlO 2
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32 6 - 2 47

33 7- S 47 40 2
6- 9 47 S 2 :.
g- II 35 9 2
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q' KEY 0 ORIENT

I * KEY r CHG r INDX• KF.Y N GRD Pl CHK
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_._ • KE.Y B, C-bAR CHCK

Fig. 1. The XY plane image data development program
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Fig.2. Rotatedpartialdevelopment,rotationsubprogram

Fig.3. Rotated full structure, rotation subprogram
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129 35 42 49 33 2
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156 35 50 64 76 2
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308 35 106 115 116 2
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Fig. 4. CBAR listing, data set edit subprogram
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Preliminary Analysis of the Microwave Weather

Project Data for CY 1971
M. S. Reid and R.W.D. Booth

Communications Elements Research Section

The Weather Pro/ect forms part of an overall Radio Systems Development

Pro/ect which seeks to optimize the spacecraft-to-ground communications link.

Statistical correlations of weather and communications capability at X- and

K-bands are needed to provide practical predictions of link performance. Thus

the objective of the Weather Project is the statistical prediction of the performance
of the DSN at X-band and, in the future, at K-band. A previous article discussed

the general approach of the Weather Project, the measurements, calibrations,
equipment, and methods. Problems encountered were also discussed as well as

proposed future work. This article reports on a preliminary analysis of the Weather

Project data for calendar year 1971. These results are presented in tabular form.

Cumulative frequency distributions of percentages of excess system temperature

are tabulated as a function of time (whole year and quarterly periods) and of

antenna elevation angle (four elevation ranges and all elevation angles). Aver-

ages, standard deviations, and con/_dence limits are tabulated, and the experi-

mental results are compared with the data from a theoretical study based on

estimated and observed cloud cover effects.

I. Introduction

The Weather Project forms part of an overall Radio

Systems Development Project which seeks to optimize

the spacecraft-to-ground communications link. Statistical

correlations of weather and communications capability

at X- and K-bands are needed to provide practical pre-

dictions of link performance. Thus the objective of the

Weather Project is the statistical prediction of the per-

formance of the DSN at X-band and, in the future, at

K-band. A previous article (Ref. 1) discussed the general

approach of the Weather Project, the measurements,

calibrations, equipment, and methods. Problems encoun-

tered were also discussed as well as proposed future

work. This article reports on a preliminary analysis of

the Weather Project data for calendar year 1971. These
results are presented in tabular form. Cumulative fre-

quency distributions of percentages of excess system
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temperature are tabulated as a function of time (whole

year and quarterly periods) and of antenna elevation

angle (four elevation ranges and all elevation angles).

Averages, standard deviations, and confidence limits are

tabulated, and the experimental results are compared

with the data from a theoretical study (Ref. 2) based on
estimated and observed cloud cover effects.

II. Discussion of the Tables

The results for calendar year 1971 are presented in

tabular form. Table 1 is a cumulative frequency distribu-

tion of percentages of excess system temperature due to

atmospheric conditions and other unknowns as a function

of antenna elevation angle. The excess system tempera-
tures have been divided into increments of 10 K. Four

antenna elevation angle ranges have been considered:

6 to 14.99, 15 to 24.99, 25 to 44.99, and 45 to 90 deg. The

table consists of percentages of time that the excess

system temperature was less than the nominal magnitude

for the various antenna elevation angles. Thus for 88.4

percent of the time that the antenna's elevation angle

was in the range 6 to 15 deg, the excess system tempera-

ture was under 10 K. The column on the right lists

percentages for all elevation angles.

The frequency distribution shown in Table 1 is for the

whole of calendar year 1971. The table lists percentages

of time, in each antenna elevation angle range, that the

excess system temperature was less than the value given

in the left-hand column. Tables 2 through 5 are similar

tables for quarterly periods. Table 4, for example, is the

frequency distribution for June through August 1971.

The total number of minutes of good data recorded

in each category is listed at the bottom of each of the

above tables. In Table 1, for example, which refers to

the whole of calendar year 1971, the total number of

minutes of good data recorded is listed as 172,000 out of

a possible 529,000 minutes. This means that good data

were obtained for only 33 % of the year. The reasons for

missing or bad data are several. Data were lost when

scheduled X-band radio science experiments were car-

ried out, or when the X-band system was undergoing

frequency changes, development or diagnostic work, or

when equipment failed. The unusable or "bad" data were

recorded when the X-band system suffered from S-band

transmitter fourth harmonic interference, noise burst

interference, or when calibration was lost due to equip-

ment or operator error, etc.

The usable or "good" data, however, are also subject
to some error. The most common sources of error in the

good data are inaccuracies in the scale calibrations due

to drifts in the equipment and an insufficiently deter-
mined fair weather baseline. These sources of error are

being investigated.

Table 6 shows averages, standard deviations, and con-

fidence intervals on measured excess system temperatures

for the whole year and for the year divided into separate

quarters. In each period the data have been divided into

the same antenna elevation intervals as in the previous

tables. The results have been computed taking one data

point per minute of recorded data. The mean values of

the excess system noise temperature for the various pe-

riods and elevation angles are shown in the second
column. The next column lists the standard deviation of

the data. This column shows that there is a considerable

spread in the data, particularly at low elevation angles
and for the winter months. The next two columns list

the 95 and 50% confidence intervals, computed from the

measured data, on the mean values of the excess system

temperatures. These confidence intervals were calculated

assuming all errors are random and neglected the effects

of any bias in any of the measurements. Bias errors

would degrade the calculations by widening the intervals

for a fixed confidence. Hence, neglecting bias errors and

assuming the same conditions held for next year (same

equipment, same weather, etc.), one would expect to

obtain a mean excess near 5.6 K with a probability of
about 0.95.

The mean value can be calculated with good resolu-

tion since one data point per minute is recorded and
used in the calculations; hence N, the total number of

data points, is large. The sample mean converges fairly

rapidly, approximately as cr/V_, where _ is the standard

deviation of the data. The sample mean converges as

cr/k/'N if the data are gaussian distributed, which is only

approximately true in this case.

Tables 7 and 8 are a comparison between experimental

and calculated data for 0.90 and 0.99 probability condi-

tions. The experimental data are the frequency distribu-

tion tables of excess system noise temperatures, Tables 1

through 5, and the calculated results are based on a

theoretical study of cloud cover (Ref. 2). The agreement

is not good at 0.99 probability but is somewhat better

at 0.90 probability, There are several possible reasons for

this. The theoretical study was based on observed and
estimated cloud cover of the Goldstone area for a time

period of a few years prior to the start of the Weather
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Project. One would expect that as the elevation angle of

the antenna is lowered, the probability of a cloud inter-

cepting the beam of the antenna would increase, resulting

in a higher expected noise temperature. Hence the cal-

culated results show a steady increase in excess system

temperature with decrease in elevation angle.

The statistics from the experimental data are a little

more uneven. The experimental results include all ele-

ments that affect the system noise temperature such as
clouds, rain, snow, and all the effects and errors not

related to the atmosphere and described above. Further-

more, the 0.99 probability level is extremely sensitive to
the actual data. Roundoff errors, the choice of antenna

elevation channel size, and in some cases such as low

elevation angles, the relatively few data points all lead

to these uneven results. The 0.90 probability level should

be more reliable since a fairly large amount of data falls

above the 0.90 probability level.

It must be noted that:

(1) Measured results are based on one year of data

only. It is not possible to derive meaningful sta-

tistics from one year of recorded data.

(2) The calculated values are based on cloud cover

only, whereas the measured values are for all at-

mospheric effects.

For the measured results the underlying data are

only approximately gaussian distributed (as indi-

cated by a test for normality), and therefore the

use of confidence intervals is suspect.

(4) More measured data are required before meaning-
ful statistics can be deduced.

(5) A more accurate baseline must be determined.
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Table 1. Cumulative percentage probabilities of excess
system temperature for CY 1971

Excess

system Range of antenna elevation angle, deg

tempera-
tur8

less than, 6-15 15-25 25--45 45-90 6-90
K

10 88.4 94.4 95.3 97.1 96.3

20 91.1 96.1 96.6 97.8 97.2

30 98.1 96.4 97.2 98.2 97.7

40 94.8 96.7 97.6 98.4 98.0

50 95.3 96.7 97.8 98.5 98.2

60 96.6 97.0 98.0 98.5 98.3

70 96.6 97.3 98.3 98.6 98.4

80 97.0 97.6 98.4 98.7 98.5

90 97.0 97.9 98.5 98.9 98.7

100 97.0 98.2 98.8 99.2 99.0

110 97.0 98.2 98.8 99.3 99.1

120 97.0 98.7 98.9 99.3 99.2

130 97.8 99.0 99.2 99.4 99.4

140 97.8 99.3 99.4 99.4 99.5

150 98.6 99.6 99.5 99.4 99.6

160 98.6 99.9 99.6 99.4 99.7

170 99.0 99.9 99.6 99.5 99.8

180 99.0 1O0.0 99.8 99.6 99.9

190 99.4 100.0 100.0 99.7 100.0

200 99.4 100.O 100.0 100.0 100.0

210 99.8 100.0 100.0 100.0 1O0.0

220 99.8 100.0 100.0 100.0 100.0

270 1O0.0 1O0.0 100.0 100.0 100.0

Antenna elevation angle was:

6-15 deg 4.61% of the time.

15--25 deg 6.40% of the time.

25--45 deg 16.75% of the time.

45-90 deg 72.24% of the time.

Total number of minutes of good data recorded was 172,000

out of a possible 529,000 minutes.
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Table2. Cumulativepercentagedistributionofexcesssystem
temperatureforCY 1971 (December, January, February)

Excess

system Range of antenna elevation angles, deg

tempera-
ture

less than, 6-15 15-25 25-45 45--90 6-90
K

10 77.2 92.6 92.7 90.4 89.6

20 82.6 92.6 93.5 91.1 90.8

30 88.0 92.6 94.3 92.9 92.7

40 92.0 92.6 94,3 93,9 93,8

50 93.3 92.6 94.3 94..6 94.4

60 96.0 92.6 94.3 95.0 95.0

70 96.0 92.6 94.3 96.0 95.7

80 97.3 95.1 94.3 96.3 96.1

90 97.3 97.6 94.9 96.5 96.5

100 97.3 100.0 96.6 97.5 97.6

110 97.3 100.0 96.6 97,9 97,9

130 100.0 100.0 96.6 98.1 98.3

150 100.0 100.0 97.1 98.1 98.4

160 100.0 1O0.0 97.9 98.1 98.5

180 100.0 100.0 99.4 98.1 98.8

190 100.0 100.0 100.0 98.5 99.2

200 100.O 100.0 100.0 99.4 99.8

210 100.0 100.0 100.0 100.0 100,0

Antenna elevation angle was:

6-15 deg 10.25% of the time.

15--25 deg 5.59% of the time.

25--45 deg 17.92% of the time.

45-90 deg 66.24% of the time.

Total number of minutes of good data recorded was 21,830 of

a possible 129,750 minutes.
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Table3. Cumulativepercentagedistributionofexcesssystem
temperatureforCY 1971 (March, April, May)

Excess

system Range of antenna elevation angles, deg

tempera-
ture

less than, 6-15 15-25 25-45 45-90 6-90
K

10 98.4 98.2 99.5 99.3 99.3

20 100.0 100.0 100.0 99.8 99.8

80 100.0 100.0 100.0 100.0 100.0

40 100.0 100.0 100.0 100.0 100.0

Antenna angle was:

6-15 deg 2.13% of the time.

15-25 deg 2.71% of the time.

25--45 deg 11.52% of the time.

45-90 deg 83.63% of the time.

Total number of minutes of good data recorded was 48,345 out

of a possible 183,400 minutes.
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Table4. Cumulativepercentagedistributionofexcesssystem
temperatureforCY 1971 (June, July, August)

Excess

system Range of antenna elevation angles, deg
tempera-

tttre

less than, 6-15 15-25 25-45 45-90 6-90
K

10 80.5 93.1 92.4 92.9 92.3

20 83.9 93.1 92.5 94.9 93.9

30 86.6 93.1 92.5 95.2 94.2

40 86.6 93.1 94.7 95.4 94.7

50 87.2 93.1 95.8 95.6 95.1

60 87.2 93.1 95.8 95.6 95.1

70 87.2 93.1 96.3 95.6 95.2

80 87.2 93.1 96.3 95.8 95.4

90 87.2 93.1 96.3 96.6 96.0

100 87.2 93.1 96.8 97.3 96.6

110 87.2 93.1 96.8 97.5 96.8

120 87.2 95.1 97.3 97.6 97.1

130 87.2 96.1 98.9 97.8 97.6

140 87.2 97.1 100.0 98.0 98.0

150 91.4 98.1 100.0 98.1 98.3

160 91.4 99.1 100.0 98.3 98.6

170 93.5 99.1 100.0 98.9 99.1

180 93.5 100.0 100.0 99.4 99.5

190 95.6 100.0 100.0 99.5 99.7

210 97.7 100.0 100.0 99.5 99.8

220 97.7 100.0 100.0 100.0 99.9

270 100.0 100.0 100.0 100.0 100.0

Antenna elevation angle was:

6-15 deg 4.07% of the time.

15-25 deg 8.69% of the time.

25--4.5 deg 16.0% of the time.

45-90 deg 71.23% of the time.

Total number of minutes of good data recorded was 34,866 out
of a possible 132,900 minutes.
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Table5. Cumulativepercentagedistributionofexcesssystem
temperatureforCY 1971 (September, October, November)

Excess

system Range of antenna elevation angles, deg
tempera-

ture

less than, 6-15 15--25 25-45 45--90 6-90
K

10 96.4 94.9 95.7 99.6 98.2

20 97.3 97.9 98.0 99.7 99.0

30 97.3 98.4 99.0 100.0 99.5

40 98.6 98.9 99.0 100.0 99.6

50 98.6 98.9 99.0 100.0 99.6

60 100.0 99.4 99.4 100.0 99.8

70 i00.0 100.O 99.7 100.0 100.0

80 100.0 100.0 100.0 100.0 100.0

90 100.0 100.0 100.0 100,0 100.0

100 100.0 100,0 100.0 100,0 100.0

110 100.0 100.0 100.0 100,0 100.0

Antenna elevation angle was:

6-15 deg 4.65% of the time.

15-25 deg 7.76% of the time,

25-45 deg 19.93% of the time,

45-90 deg 67.66% of the time.

Total number of minutes of good data recorded was 71,904 out
of a possible 132,500 minutes.
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Table6. Averages,standarddeviations,andconfidenceintervals
onexcesssystemtemperatureforCY 1971

Period

Range of Excess noise
Standard 95% 50%

antenna temperature deviation, confidence level, confidence level,
elevation mean value, K K K

angles, deg K

6-15 ll.O 32.1 ±0.71 ±0.24
CY 1971

15--25 7.9 21.8 +---0.41 -+0.14

January 25-45 6.4 18.3 -+0.21 -+0.07

through 45-90 5.6 17.1 -+0.10 -+0.03

December All angles 6.1 18.6 _-0.09 -++-0.03

6-15 11.6 26.0 -+1.07 -4-0.18

December 15-25 7.2 23.6 -+1.32 -+0.37

January 25--45 9.8 34.7 -+1.09 -+0.46

February 45-90 9.0 81.2 +0.51 -+0.37

All angles 9.3 31.0 ---+0.41 -+0.14

6-15 4.0 5.2 -+---0.34 _0.12

March 15-25 8.1 5.0 -+0.29 -+O.10

April 25-45 2.1 4.2 -+0.12 -+0.04.

May 45-90 3.9 5.2 "4-0.05 -+0.02

All angles 3.7 5.1 "4-0.05 _0.02

6-15 30.6 63.0 +3.30 -+1.13

June 15-25 15.5 85.5 "+'1.26 +0.44

July 25-45 11.6 24.9 -+0.65 -+0.22

August 45-90 11.6 27.3 ±0.34 -+0.12

All angles 12.7 30.3 -----0.32 4"0.11

6-15 4.2 9.1 -+0.31 -+0.11

September 15-25 5.0 8.9 -+0.23 -+0.08
October 25--45 4.9 8.6 -+0.14 --+0.05

November 45-90 2.7 4.7 -+0.04 -+0.01

All angles 3.4 6.4 ±0.05 -+0.02
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Table7. Comparisonofcumulativeprobabilitiesderivedfrom
calculatedandmeasuredresultsfor0.99probabilityconditions

(Probabilityof0.99excessnoisetemperatures
willbelessthanvaluetabulated)

Elevation Calculated Measured
Period

angle, deg results, K results, K

CY 1971 6-15 75 170

January 15-25 40 130

through 25-45 25 123
December 45-90 17 93

6-15 110 116
December

15-25 60 96
January 25-45 40 167

February 45-90 25 195

6-15 45 53
September 15-25 25 52
October

25--45 18 30
November

45-90 14 < 10

Table 8. Comparison of cumulative probabilities derived from
calculated and measured results for 0.90 probability conditions

(Probability of 0.90 excess noise temperatures
will be less than value tabulated)

Elevation Calculated Measured
Period

angle, deg resu]ts, K results, K

CY 1971 6-15 35 16

January 15-25 18 < 10

through 25-45 10 < 10
December 45-90 6 < 10

6-15 50 35
December

15-25 25 < 10

January 25-45 15 _ 10

February 45-90 9 < 10

6-15 25 < 10
September 15-25 12 < 10

October 25--45 7 < 10

November 45-90 4 < 10
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High.Reliability Microcircuit Procurement in the DSN
E. F. Zundel

DSIF Digital Systems Development Section

The implementation of microelectronic circuits in the DSN is discussed together

with utilization of an equivalent MIL-STD-883 Class B device, screening tests

to be used and screening philosophy relative to failure mechanism patterns. The

costs to be expected and the advantages of standardization of device types to

increase quantity buys are also discussed.

I. Introduction

For the past several years, the JPL DSIF Digital Sys-

tems Development Section has utilized a standardized

line of digital logic elements in system development and

implementation. These modules were manufactured with

discrete components which were screened by being sub-

jected to voltage/temperature stresses and specified visual
and electrical tests. The component screening process

coupled with workmanship controls during module as-

sembly produced a digital module at a reliability level

suitable for ground telemetering and control systems.

As systems have become more complex, increased

speed requirements and space limitations have necessi-

tated the use of microcircuits in DSIF digital systems.

This article discusses the philosophy being used in the
procurement of these microcircuits.

II. The Reliability Level

MIL-STD-883, "Test Methods and Procedures for Mi-

croelectronics," contains industry-accepted methods and

conditions of test that might be selected to achieve a

desired level of quality and reliability. Three reliability

classes have been defined by this standard as follows:

Class A. Devices intended for use where maintenance

and replacement are extremely difficult or impossible

and reliability is imperative.

Class B. Devices intended to be used where mainte-

nance and replacement can be performed but are

difficult and expensive and where reliability is im-

perative.

Class C. Devices intended to be used where mainte-

nance and replacement can readily be accomplished
and where downtime is not a critical factor.
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Various levels of screening tests can be selected from

MIL-STD-883 to verify that the device can be properly
classified for an intended use as indicated above. The

highest levels of screening tests are more restrictive and

therefore more costly to perform. To be cost effective, a

careful study of screening levels must be made to select

only those which contribute significantly to the assurance
that the device meets the classification desired.

Class B is considered adequate for DSN systems.

Screening test levels have been selected from those
recommended in MIL-STD-883 for this device classi-

fication.

III. Failure Mechanisms

Experience data which will identify the most frequent

failure mechanisms for similar device types are extremely

valuable in selecting screening tests. Rome Air Develop-

ment Center (RADC) Reliability Notebook Vol. II lists
the most common failures of microelectronics as:

(1) Lead bond failures.

(2) Leakage (nonhermetie).

(3) Changes in transfer characteristics.

The foUowing are listed by RADC as failure mecha-

rtisms which are representative of the industry average:

discrete component which is sufficiently similar to the

microcircuit to be of interest. The results on some 275,000
transistors are:

Failure mechanism
Percent of

total failures

Contamination due to nonhermeticity 79

Lead bond failures 14

All other 7

A special set of circumstances existed which contributed

to the very high contamination failure rate. Since this

has been corrected, the leading defects are lead bond

failures, with metalization defects next in frequency of
occurrence.

IV. Screening and Test Philosophy

The Digital Systems Development Section has pub-

lished a general specification for integrated microelec-

tronic circuits (ES 506145) which is being used to procure

devices for DSN digital systems. This specification has

incorporated screening tests which are expected to mini-

mize the probability of that devices with potential defects

will be installed in system hardware. Special emphasis

is placed in those areas of high failure incidence as shown
below:

Percent of
Fafluremechanism

total failures

1. Wire bond failures 33

2. Metalization failures 26

3. Contact and photolithographic 18
failures

4. Others 23

In another survey, less than 50% of total defects can

be traced to device complexity while more than 50% of

defects are due to lead bonds, photolithography, and
contamination.

Failure mechanism Screening test

Lead bond failures

Contamination defects

Metalization defects

Pre-cap visual

Temperature cycle

Centrifuge
Burn-in

Bond strength

Pre-cap visual

Temperature cycle

Hermeticity
Burn-in

Pre-cap visual

Temperature cycle
Burn-in

The Digital Systems Development Section has accu-

mulated failure data on the high-reliability modules re-

ferred to in Section I by utilization of a program which

requires each failed component to be reported and the
failure mechanism determined. The transistor is the only

It will be noted from the table above that pre-cap

visual, burn-in, and hermeticity play prominent roles in

detecting potential failures. Electrical tests which are

designed to identify changes in parameter and functional

characteristics are contained in a detail specification
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because of the unique nature of each device type. The

detail specification also specifies limits on certain critical

parameters and requires that measured values be pro-

vided. A lot percent defective allowable (PDA) is defined

in the detail specification. This requires the supplier to

collect certain test failures for each device in a given

screening lot. If the percentage of fails exceeds the allow-

able limit, the entire lot is rejected. This prevents the

acceptance of any lot which encountered a higher than

normal rejection rate, with the likely possibility that the

remainder passed the test with marginally acceptable
characteristics.

The general specification requires that JPL be per-

mitted to monitor any of the manufacturing or screening

operations. Failure mechanisms may not be in the same

ratio for a particular supplier when compared to the

industry average. As this becomes known, it permits a

shift in monitoring effort into the area of greatest con-

cern. It has been found that suppliers of this product

devote attention to process details in direct proportion

to the interest and concern shown by the user. Inherent

reliability is a function of process controls, while screens

aid in identifying devices where process variations oc-
cur.

V. Costs of Screening

Screening costs can be reduced to a practical level by

pooling orders to increase quantities and providing a

controllable specification to facilitate a competitive bid-

ding environment. Pooling of orders is readily accom-

plished when devices are standardized for use in multiple

systems. In addition to the cost benefit resulting from

large-quantity orders, the customer also benefits because

the supplier can assign a manager to the program and

still make a profit. The supplier can also accommodate

process monitoring and benefit from the usual upgrading

of his system. Larger quantities attract more suppliers,

thus increasing competition. The supplier is willing to

furnish meaningful data which can be used effectively

on follow-up procurements, including histograms of pop-
ulation distributions by parameter, which enables the

user to adjust his specification limits, increasing the yield

and further reducing costs.

An example of unit price reductions resulting from

quantity buys is shown below:

Device

Catalog price for Recent
100 units at

equivalent procurement to
Class B, $ JPL Class B, $

Device A (SSI) a

Device B (SSI) a

Device A (MSI) b

Device B (MSI) b

6.30 ea. 4.20

11.44 ea 5.90

18.45 ca. 7.90

29.91 ea. 11.45

aSmall-scale integrated circuit.

bMedium-scale integrated circuit.

While the unit price reductions are impressive, the real

benefit comes from a better managed program which

gives added confidence to the user.

VI. Follow-up and Analysis

Persistent follow-up is required in order to continue to

realize maximum benefit from procurement dollars. De-

vices which fail must be analyzed to properly evaluate

the screens. Proper data analysis permits the elimination

of money spent on screens which detect very few or no

failures. Increased processing is of no value if it delays

deliveries without producing a more reliable lot. Only

by follow-up and analysis can an assessment be made as

to whether the objectives are being met.
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Ground Communications Facility

Functional Design for 1973-1974
J. P. McClure

DSlF Digital Systems Development Section

The Ground Communications Facility (GCF) 1973-74 capability, described

herein, will be used to support Pioneer, Mariner Venus-Mercury 1973 (MVM73),

and Helios operations, plus the early development and testing associated with the

1975 Viking project. The design includes a full spectrum of GCF capabilities for

the overseas 64-m-diameter antenna stations. The wideband data system will be

enlarged to cover all 64-m stations, plus CTA 21 and DSS 71. The standard wide-

band rate will be 28.5 kbps with limited use of 50 and 230 kbps for special pur-

poses. The wideband block length will be increased to 2400 bits after MVM73.

The number of teletype circuits will be reduced in keeping with the DSN's policy

of eliminating this medium for computer-to-computer data transfer.

I. Introduction

The Ground Communications Facility (GCF) provides

the ground communications capability required by the

DSN for the conduct of space flight operations. This capa-

bility changes in an evolutionary manner to meet the con-

stantly changing (generally increasing) communications

requirements of the DSN.

This article discusses the general design of the GCF for

the 1973--1974 era. The majority of the implementations

required for this new capability will be completed by mid-

1973. The capability outlined herein will be used to sup-

port the Pioneer 10, Pioneer G, MVM 73, and Helios 1974

operations. This capability will also support early develop-

ment and testing associated with the 1975 Viking project.

The GCF consists of four systems: voice, high-speed

data (HSD), teletype, and wideband (WB). Although each

system provides a distinctly different capability, the sys-
tems share some terminal equipment and transmission
circuits.

II. Transmission Capability

The GCF 1973-74 committable transmission capability

is shown in Fig. 1. This capability will provide a basic

allocation of one voice, one high-speed data, and two tele-

type circuits per DSS. Wideband data circuits will inter-

connect the SFOF with Deep Space Stations 14, 42/43,

61/63, 71, and CTA 21. The specialized MVM 73 project-
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oriented requirements of Hangar AO and Boeing are

depicted. Except for one teletype, the AO circuits will be

activated only in support of launches and prelaunch test-

ing, while the Boeing circuits will be turned up only for

testing purposes in early 1973. The NASCOM Madrid

Switch Center will be the circuit interface point for data

exchange between the Mission Control and Computing

Center (MCCC) and the Helios operational facilities in

Germany. The circuits necessary for the traffic load will

be provided between the Central Communications Ter-

minal and the Network Control System (NCS). The com-

position of these circuits will vary depending on the NCS
location.

Most of the GCF transmission capability is furnished by

the NASA Communications Network (NASCOM) from a

pool of circuits which it uses to satisfy all of NASA's long-

haul tracking network communications requirements. The

communications capability of the GCF ebbs and flows

as requirements change and is seldom constant from day

to day. The capability shown in Fig. 1 represents the cir-

cuit quantities used for terminal equipment design pur-

poses. Although circuit quantities may change quickly,

the highly specialized terminal equipment is permanently

installed and has a relatively lengthy development and

implementation cycle. The transmission capability shown

in Fig. 1 is not exhaustive. The GCF provides many cir-

cuits to other locations too numerous to depict herein.

III. Voice System

The GCF voice system for 1973-74 will be functionally

the same as the present system. Voice circuits are shown

on Fig. 1 although this figure does not include NASCOM
west coast switch circuits.

Tactical intercom assemblies for DSS 43 and DSS 63

will be installed at these new stations, and tactical inter-

corns will replace the STDN-supplied equipment at Sta-
tions 11, 42 and 61. Voice circuits will be installed between

the NCS and the Central Communications Terminal, and

an internal NCS voice capability will be implemented.

During noncritical periods, all overseas Deep Space Sta-

tions supporting a particular project will normally be com-

bined on a single net. Independent circuits to each DSS

will be provided during critical periods, NASCOM re-

sources permitting.

IV. High-Speed Data System

The general configuration of the GCF 1973-74 high-

speed data capability at the Central Communications Ter-

minal (CCT) (JPL Bldg. 230), the 26-m stations, CTA 21,
and DSS 71 will be as shown in Fig. 2. In comparison with

the present configuration, this configuration has been

changed as follows:

(1) The Central Communications Terminal high-speed

capability has been increased to accommodate eight

HSD streams instead of the six formerly available.

These extra channels are now accommodating the

joint MM71/Pioneer needs.

(2) The three channels of the HSD equipment in the
Simulation Center will be relocated to the Cen-

tral Communications Terminal, thus increasing the

CCT capability to 11 channels.

(3) Two new additional channels may be installed in

the CCT to raise its capability to 13 channels total

in support of MVM 73, Pioneer F and G, and Helios.

(4) The simulation conversion assembly/antenna point-

ing subsystem (SCA/APS) computer transmit chan-

nel will be connected to an existing block multi-

plexer (BMXR) input port at DSSs 11, 42, and 61.

The Central Communications Terminal will be modi-

fied to interconnect the Network Control System (NCS)

to the Deep Space Stations and Office of Computing

and Information Systems (OCIS)/Project locations. The

nature of the modifications will be reported later.

The HSD configuration at DSSs 14, 42/43, and 61/63

is shown in Fig. 3. This configuration, which is substan-

tially different from that at the 26-m-diameter antenna

stations, provides for two operational HSD circuits, with

dual BMXRs, error detection encoder-decoders (EDEDs)
and data sets. Dual circuits will connect each location to

its area switch. A monitor interface unit will also be pro-
vided at all 64-m station locations.

The new BMXR selector will permit any of the Deep

Space Station computers to be connected to any of the

operational or backup block multiplexers. The BMXRs

will continue to provide four input ports; thus not all of

the computers may be simultaneously connected to the

same HSD line. Barring this limitation, complete switch-

ing flexibility will be provided.

The block demultiplexer selector, a new device, will

permit any of the block demultiplexer (BDXR) output

ports to be connected to any of the DSS computers. Full

switching flexibility will be provided. However, this selec-

tor will include provisions against accidental connection

of two BDXR ports to the same computer input channel.
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No provision will be made in this device to permit one

BDXR port to drive two computer input channels.

The high-speed data assembly at all Deep Space Sta-

tions will be structured so that a conventional audio loop-

around will be possible at the line side of the data sets.

These loop-around capabilities will aid station prepass
checkout.

The high-speed data block size will continue to be 1200

bits long. Circuit speed will remain at 4800 bps. However,

all future HSD equipment and interfaces (except data

sets) will be designed to operate at rates up to 9600 bps.

The HSD system will have an end-to-end (DSIF-JPL/

CCT) long-term uncorrected bit error rate of 6 >( 10 -_ or

lower. On a long-term basis, 985 of all blocks will be

delivered error free. (Of the remaining 2_, nominally up

to 1_ may be delivered with known transmission errors,

and up to 1_; will either not be delivered or will not be

properly identified.)

V. Teletype System

The 1973-74 GCF teletype system will typically pro-

vide only two (instead of four) teletype circuits per station

(Fig. 1). These 100-wpm circuits will carry very limited

traffic: OPS-X (operational teletype) messages, confer-

ences, and administrative messages. The DSS teletype cir-

cuits will not be used for telemetry, command, monitor,

or simulation data. Tracking data will be phased off tele-

type during this period. During 1973-74 the GCF will

continue to deemphasize teletype for operational traffic

with the ultimate aim of reserving teletype as a medium

for administrative traffic only. Teletype will not be inter-

faced to the NCS. The existing Communications Processor

will provide the necessary teletype switching and OCIS

computer interfacing. Plans will be developed during this

period to phase out the Communications Processor.

For teletype west coast switching purposes, the Central

Communications Terminal will continue to provide the

JPL end of a 32-channel voice-frequency telegraph group

(VFTG) configuration, plus interconnections for up to 30

teletype drops in the western area of the U.S.

The teletype interconnections to the DSIF telemetry

and command processor assemblies (TCPs) and digital

instrumentation subsystem (DIS) will be removed when

the third and fourth station teletype circuits are removed.
Each control room at the joint 26/64-m stations will be

provided with teletypewriter (TTY) machines which can

be connected to any of the SFOF teletype circuits serving

the joint station.

Vl. Wideband System

The current (1971-72) wideband data capability oper-

ates at 50 kbps, interconnecting the CCT with DSS 14 and

CTA 21. A terminal in the Simulation Center permits sim-

ulated data to be forwarded to DSS 14, CTA 21, or the

mission and test computer (MTC). Incoming telemetry

data from CTA 21 or DSS 14 are normally routed to the

MTC. The present wideband data terminals accept and

process standard 1200-bit data blocks, using standard

high-speed data error detection encoder/deeoder, block

multiplexer, and demultiplexer units.

The wideband data capability for 1973-74 will be as

shown in Fig. 4. In this interval wideband data will inter-
connect the SFOF to DSSs 14, 42/43, 61/63, 71, CTA 21,

and a single project location at Hangar AO, Boeing, etc.

As in the current system, JPL will provide the circuits
between the SFOF and CTA 21 and DSS 14. NASCOM

will provide the DSS 42/43, 61/63, 71 and proiect-location

circuits. All of the OCIS/Project wideband data interfaces

in Building 230 will be at the CCT. The basic wideband

data capability will operate at 28.5 kbps in support of

MVM 73 and Viking. The DSS 14 regular link will later

be upgraded to 50 kbps to meet Viking needs at that loca-

tion. Additionally, a short-period 230-kbps circuit will be
installed from DSS 14 to the JPL CCT to accommodate

an MVM 73 Venus encounter data rate of 117 kbps.

A new device, the coded multiplexer, will accomplish

the equivalent functions of a block multiplexer, error de-
tection encoder, error detection decoder, and block demul-

tiplexer. This device will be much smaller and less costly

than the four individual units and will be capable of opera-

tion at 250-kbps or higher rates. The device will include

self-test features and the capability of loop-around test-

ing. Separate monitor outputs will denote loss of signal,

search, block error, etc. The coded multiplexer will accom-
modate block lengths of 1200, 2400, and 4800 bits.

The standard wideband data block length will remain

1200 bits long through MVM 73 and will then shift to 2400

bits in preparation for Viking. The DSN Network Control

System will interface the wideband system in the JPL

CCT. Additionally, wideband circuits may also be used to
interconnect NCS elements. Details of such interfaces and

usage will be reported at a later date.
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The long-term (several-hour) end-to-end (DSIF-CCT)
bit error rate will be 5 × 10 -_ or lower. Of all of the 1200-

bit wideband data (WBD) blocks handed over to the GCF

for transmission, 97fg will be delivered error free. (Of the

remaining 3g, nominally up to 1_ will be delivered with

errors, and up to 2_ will either not be delivered or will not

be properly identified.)

VII. West Coast Switching

In support of NASCOM, the GCF provides and oper-

ates the West Coast Switching Center for voice, teletype,

and high-speed data circuits. Permanent circuits radiating
out from Pasadena to many NASA/contractor locations

are switched (on a scheduled basis) to long-haul trunks ex-

tending to the NASCOM Central Switch at the Goddard

Space Flight Center in Greenbelt, Maryland. This west

coast switch permits a relatively few cross-country trunk

circuits to satisfy the needs of numerous individual users

in the western U.S. The same GCF equipment is currently

used to switch both DSN and west coast traffic, thus pro-

viding further economies.

VIII. Reliability

In 1973--74, each traffic path through the end-to-end

GCF (except WBD) will have a critical period long-term

availability of not less than 0.99 during any scheduled

usage period, measured after data flow is established.

WBD will have an availability of 0.98 on the same basis

as above. The critical-period mean-time-to-restore (MTR)

any service except WBD will not exceed 15 rain. No MTR

is specified at this time for WBD.
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DSN Research and Technology Support
R. M. Gosline

RF Systems Development Section

The activities of the Development Support Group for the 2-month period end-

ing August 15, 1972, are summarized. The activities are arranged according to

whether they were performed at DSS 13 or at the Microwave Test Facility (MTF),

and are further subdivided as to the section receiving support. Activities include

operational clock synchronization, precision antenna gain measurements, weak

source observations, pulsar observations, planetary radar, and DSS 14 400-kW

transmitter support.

During the 2 months ending 15 August 1972 the De-

velopment Support Group performed the following ac-
tivities.

I. DSS 13 Activities

A. In Support of Section 331

1. Pulsars. Observations of various pulsars continued

at the Venus Station (DSS 13) for a 24-hour period once

per week.

2. Planetary radar. Continuing the support of the

MVM 73 spacecraft missions, ranging data were obtained

for the planet Venus on 5 different days. As in the past,

the transmitting and receiving are done at DSS 14 with

the pseudonoise code generation, data processing, and

mission control at DSS 13. Ranging experiments were

also performed on the Jupiter moon Calisto, the planet

Mercury, and the asteroid Toro.

B. In Support of Section 333

1. Precision antenna gain measurement. The Apollo

Lunar Surface Experiments Package (ALSEP) and var-
ious radio stars were used as calibration sources from

which data were obtained to calculate the absolute an-

tenna gain and absolute flux density. A total of 89 hours
was devoted to ALSEP and 128 hours to the radio stars.

2. Weak source observations. Data were obtained on

17 radio sources which are being investigated as suitable

calibration sources for the DSN. The automatic boresight

and data-taking technique utilized the SDS-930 computer

and the DSS 13 Consean program.

C. In Support of Section 337

1. Clock synchronization transmissions. Transmissions

resumed in accordance with DSN scheduling as tabu-
lated in Table 1.

2. DSN 400-kW transmitter support (DSS 14). Con-

tinued technical support was provided to DSS 14 in this
area.
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II. Microwave Test Facility (MTF) Activities

A. In Support of Section 333

I. Antenna panel noise burst generation. Testing has

continued prior to planning a more extensive investiga-
tion at DSS 13.

B. In Support of Section 335

1. Pocket RF Monitor. Testing of the pocket RF mon-

itor, described in Ref. 1, has begun.

C. In Support of Section 337

1. Klystron testing. Additional klystron tests were per-

formed in support of the DSN transmitters.

Reference

1. Jackson, E. B., "DSN Research and Technology Support," in The Deep Space

Network Progress Report, Technical Report 32-1526, Vo]. X, pp. 149-151. Jet

Propulsion Laboratory, Pasadena, Calif., Aug. 15, 1972.
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Table 1. Clock synchronization activity from DSS 13

Number of

Stations transmissions

DSS 41 21

DSS 4"2 9

DSS 51 17

DSS 6"2 18
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Coaxial Switch Evaluation

H. G. Nishimura

R.F. Systems Development Section

Miniature coaxial transfer switches from various manufacturers were tested

for the purpose of finding an acceptable replacement for the larger switch now

used in the Deep Space Instrumentation Facility (DSIF). The switches, which

are planned for use in the S- through X-bands, were tested to determine both

their mechanical and electrical properties. Two units were considered acceptable.

These switches will reduce the size and cost of future microwave equipment and

will also provide the requirements for meeting increasing performance demands.

I. Introduction

The Antenna Microwave Subsystem of the Deep Space

Instrumentation Facility (DSIF) has for years been using

coaxial transfer switches for configuration control of the

receiver and exciter signals. Transfer switches are es-

sentially double-pole, double-throw RF switches. The

switches are employed within equipment mounted on
the antenna structure and in the control room; most are

controlled by push-button switches from equipment in
the control room.

The DSIF equipment has been mounting in complexity

and, with the advent of X-band equipment as well, there

is an urgent need for smaller components. In order to

prepare for future hardware requirements, a simulated
life test was conducted on a number of newer types of
miniature coaxial switches.

Miniature coaxial transfer switches from several dif-

ferent manufacturers were extensively tested for the pur-

pose of selecting one or two units for use in the Deep

Space Instrumentation Facility. The switches were sub-
mitted to both mechanical and electrical tests. The radio

frequency (RF) tests were conducted in the lower S-band

only, although most of the switches are rated for use in
the X-band as well.

II. Test Description

Prior to testing, the switches were mounted on a test

chassis as shown in Fig. 1. Table 1 shows in detail the

manufacturer's rating of each switch and serves to point

out the differences among the various units. The switches

are latching Wpes with indicator contacts and are actu-

ated by 115 Vac. They all employ SMA RF connectors.
Tests were conducted as described below.
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A. ConnectorPinandDielectricDepthMeasurements
The female SMA connectors of the switches consist of

an outer shell and center pin with Teflon dielectric be-

tween the two segments. The pin and dielectric are

pressure-fitted within the outer shell. Because of internal

forces during switching, both pin and dielectric can be

displaced during the life of a switch. Initially, the pin

and dielectric depths below a fixed point were measured
to establish a reference for a later measurement to be

made at the conclusion of the simulated life test.

B. RF Tests

The switches were tested for voltage standing wave

ratio (VSWR), insertion loss, and isolation at 5-MHz

intervals between 2000 and 2300 MHz. These readings

were made at ambient temperatures of 0, 25, and 50°C.

This temperature range is adequate, because of the
controlled environment of the DSIF equipment. The

switches were sent to a commercial testing firm equipped

with automatic microwave testing equipment, resulting

in a significant cost reduction.

C. Simulated Life Test

The units were continuously switched from position 1

to position 2 for more than 200,000 complete cycles. A

cycling period of 10 s was employed. RF power was not

applied during the test.

D. Connector Pin and Dielectric Depth Measurements

The measurements of Subsection A above were re-

peated after the simulated life test. The two sets of

readings provide reasonable data on pin and dielectric

displacements as a result of continuous switching.

E. RF Tests

The RF measurements discussed in Subsection B above

were repeated, with the exception that the measurements

at ambient temperatures of 0 and 50°C were omitted.

Because there were only negligible changes at varying

ambient temperatures in the previous measurements,
little was left to be gained by repeating this portion of

the test. Instead, an RF repeatability test was substituted,

consisting of three readings at each data point, each

reading taken after switching through one complete cycle.
The purpose of this test was to ascertain the repeatability

of the switch properties for any given position of the

switch.

III. Test Results

Table 2 summarizes some of the data from the tests.

The figures shown are average values.

As a result of the simulated life test, three of the switch

types were considered failures. At 20,000 cycles, the first
failure occurred when the switch froze in one of its

positions. Another switch developed an intermittent latch-

ing problem at 23,000 cycles. A third switch, which had

displayed an annoying 60-cycle hum from the outset, had

an indicator circuit failure at 80,000 cycles.

The two switches which displayed no mechanical mal-

function during the simulated life test revealed data

inconsistency during the BF repeatability test. When one

of the manufacturers was contacted, it was indicated that

a similar problem occurred at the manufacturer's facility

after the JPL evaluation switch had been purchased. The

gold plating on the RF contacts had worn due to cycling,

exposing the beryllium copper contacts, and creating a

higher than normal dc contact resistance. The manu-

facturer assured JPL that corrective action had been

taken, and subsequent cycling of his switch had indicated

that the steps taken were satisfactory.

The contact resistances of the JPL switches were mea-

sured with a Wheatstone Bridge, and there was corre-
lation between the resistance measurements and the

contacts that had shown intermittent performance.

The switches were taken apart, including the RF head,

for a visual inspection of workmanship and design.

IV. Conclusion

The tests were helpful in two ways: (1) they were

invaluable in ascertaining whether the manufacturer's

specifications met his claims; (2) they have resulted in

the selection of two switches of outstanding character-

istics, either of which may be utilized on future design
within the DSIF. The selected switches are manufactured

by Teledyne Microwave and Transco Products.

Future plans include tests at X-band and additional
simulated life tests.

Table 3 shows a comparison of specifications between

the presently used switch and one of the miniature
switches selected as a result of the tests.
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Table 1. Manufacturer's ratings

Switch type

Characteristic RLC Wavecom Microwave Transco Products Teledyne
Electronics Industries Associates Microwave

700C70400
SR-T-R-A-I-L 2921-0500 MA7531-TMNA CS-37S7C-1

Frequency, GHz DC-12.4 DC-3 DC-18 0.1 -- 12.4 DC-18

VSWR at Frequency, 1.30:1 at DC-7 1.20 at DC-8 1.25:1 at DC-4 1.25 at DC-4 1.25:1 at DC-6
GHz 1.80:1 at 7-12.4 1.35:1 at 4-8 1.35 at 4-8 1.40:1 at 6-12

1.50:1 at 8-12.4 1.50 at 8-12.4 1.50:1 at 12-18

1.70:1 at 12.4-18

Isolation, dB Min. at 60 at DC-12.4 75 at DC-8 60 at DC-18 70 at DC-6

Frequency, GHz 60 at 6-12
60 at 12-18

Insertion Loss, dB 0.8 at DC-7 0.25 at DC-3 0.8 at DC-7 0.25 at DC-4 0.2 at DC-6

(max.) 0.6 at 7-12.4 0.5 at 7-11 0.35 at 4-8 0.3 at 6-12
0.7 at 11-12.4 0.50 at 8-12.4 0.5 at 12-18

0.9 at 12.4-18

RF power handling 50 Not available 80 20 20

capability, W

Switching time, ms 15 25 20 20 10

(max.)

Operating ambient Not available -40 to +85 -55 to +55 -40 to -{-85 -54 to q-100

temperature, °C

Dimensions, overall, cm 5.1 X 5.7 × 10.0 4.8 X 6.0 X 7.0 8.5 X 3.8 X 6.2 3.8 X 5.5 × 7.8 3.7 X 5.7 X 4.6

Weight, g 511 312 169 156 85

Connection Solder lugs Connector Solder lugs Solder lugs Solder lugs

Life, cycles 1,000,000 200,000 200,000 100,000 1,000,000
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Table2. Performancedatasummary,beforeandafterlifetest

Switch type

Characteristic RLC Wavecom MA Transco Teledyne

Before After Before After Before After Before After Before After

Pin depth, 10 -z in. +13.0 +12.0 +10.0 +9.0 -2.0 +2.0 -2.0 +1.0 +14.0 +14.0

Dielectic depth, 10 -2 in. -2.0 +3.0 --2.0 +2.0 +3.0 +5.0 - 1.0 0 + 11.0 + I1.0

VSWR 1.06 _b 1.11 _b 1.12 1.17 1.07 1.07 1.09 1.10

Isolation, dB a >75 _b >75 _b 73 75 >75 >75 >75 >75

Insertion loss, dB 0.09 _b 0.16 _b 0.15 0.10 0.21 0.19 0.16 0.12

a75 dB is limit of test equipment.
bNo rf tests were made on these switches.

Table 3. Comparison of switch specification (f = 2.3 GHz)

New
Former

Characteristic minature
switch

switch

Weight, g 1225 118

Volume, cm 3 1066 164

Cost $364 $284

Delivery, days 90 45

VSWR 1.8:1 1.25:1

Insertion Loss, dB 0.35 0.20

Isolation, dB 60 70

Life, cycles 60,000 200,000

138 JPL TECHNICAL REPORT 32-1526, VOL. Xl



Fig. 1. Switches evaluated, shown with cycling switch and counter 
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Wideband Distribution Amplifier for Coherent
Reference Generator

C. F. Foster

R. F. Systems Development Section

A wideband (0.1 to 100 MHz) frequency distribution module has been de-

signed to have high output-to-output isolation, low phase shift with temperature,

no RF tuning, and internal means to detect module performance that can be

monitored by a computer.

I. Introduction

The DSN Mark III development plan is placing more

stringent specifications on the Deep Space Stations' fre-

quency standard distribution systems to have rigid con-

trol over phase shift and output-to-output isolation. The

subsystems are further required to provide internal means

of monitoring their performance and produce an indica-

tion compatible with computer interface.

II. Amplifier Development

A deve]opment program was initiated to create such an

amplifier module for the coherent reference generator

since no commercial amplifier exists that provides the

following: (1) 12 outputs isolated from each other by

70 dB at 100 MHz, (2) a frequency range of 0.1 to 100

MHz, (3) less than 2 deg phase shift over a temperature

change of 0 to 50 ° centigrade, and (4) a computer-level

output of module quality.

Figure i is a block diagram of the basic amplifier. A

wideband power amplifier drives a passive power divider

and the 12 output isolation amplifiers. The high output-

to-output isolation was achieved by using the 30-dB

minimum isolation of the power divider and the reverse

isolation of the output isolation amplifiers.
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Two mechanical designs were attempted during the

development. The first (Fig. 2) used the machined com-

partment technique and semirigid coax; the second (Fig.

3) used stripline transmission and flexible coax tech-

niques. The difference in isolation measured over fre-

quency range is shown in Table 1.

The final production module will be as shown in Fig. 3.

This method meets the original design requirements,

provides a high control over reproducibility, and is less

costly to produce. The module quality monitor circuit

shown in Fig. 1 uses hot carrier diodes to detect the

power level at the input and at the 12 outputs, which

are sampled by a multiplexer whose output goes to a

comparator. The detected input power signal goes to a

separate comparator. The detected input and multiplexer

output signals are compared in a gate. If the input is out

of its specified limits, the gate is off and the module indi-

cates that it is operational. If the input is within its speci-

fied limits, and one of the outputs drops out of its preset

limits, an external system detector latches until the

problem is solved.

III. Planned Production and Installation

The wideband amplifier has passed the prototype stage

and a contract has been issued for a production run.

These modules will be evaluated for uniformity of per-

formanee and will be installed in the engineering proto-

type of the coherent reference generator.
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Table 1. Performance data for wideband distribution amplifier

Compart- Printed circuit
Parameter Design mentized stripline module

goal module ( Fig. 2 ) ( Fig. 8 )

Phase stability, < 2 < 1.5 < 1.5

2 deg, at

temperature of
0 to 50" C

Output-to-output
isolation, dB, at

10 MHz >80 103 87

25 MHz >- 80 96 81

50 MHz > 80 90 79

100 MHz >-70 80 71

Harmonic < 5 < 3 < 3

distortion, %

Nonharmonically - 70 - 70 - 70

related spurious

output, dB
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Fig. 1. Coherent reference generator wideband
distribution amplifier
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Fig. 2. Mechanical details of machined wideband distribution amplifier 
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Fig. 3. Mechanical details of stripline wideband distribution amplifier 
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Dual Carrier Preparations for Viking
D. A. Bathker

Communications Elements Research Section

D. W. Brown

R. F. Systems Development Section

Multiple spacecraft vehicles for the Viking mission require simultaneous trans-

mission oJ two S-band carriers Jrom a single Deep Space Station. Past experience

in high-power diplexing, coupled with dual carriers, has shown that, in addition

to controlled uplink intermodulation products, a complex form of receive band

interference will be generated within the ground station. Recent efforts to define

and minimize these effects are being supplemented with additional resources

including reconfiguration of DSS 13 for dual-carrier diplexed operation with the

objective o_ assuring DSN capability in the Viking mode.

I. Introduction

Two simultaneous uplinks and four simultaneous down-

links are to be supported by each Deep Space Station

(DSS) of the 64-m-diameter antenna subnet for the

Viking 1975 mission to Mars (Ref. 1). A 26-m-diameter

antenna subnet will also be utilized during certain mis-

sion phases including cruise periods during which the

two spacecraft will not lie within a single antenna beam.

This 26-m-diameter support will be in the customary

single uplink and one or two downlink configuration.

During orbital operations, two additional vehicles

(landers) will be in time-shared communications with the

DSN, utilizing a common S-band carrier frequency allo-

cation. Three other S-band channels provide for each

orbiter and for a spare orbiter radio system. The fourth

downlink is at X-band, coherently generated from one of

the orbiter S-band uplinks in the so-called S/X band
mode.

Early work on dual uplinks from a single DSS includes

field investigations in relation to the Apollo Manned
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Space Flight Network (MSFN) (Refs. 2 and 3) and prep-

arations for Mariner Mars 1971 (Ref. 4).

II. Interference Problems

Experience has shown that wherever multiple carriers

share a common high-intensity field, mixing or inter-

modulation products (IMPs) can be expected to be gen-

erated (Refs. 2, 3, and 5). As a practical matter, this

interaction can and will occur in some degree both within

the internal waveguide system (Ref. 6) and in the external
incidental nonlinearities encountered in the illuminated

portion of the antenna structure as well as in the near

field physical environment of the station (Ref. 5). This

latter point illustrates the fact that even two independent,

but adjacent, stations cannot be presumed to be totally
free of this effect.

Within the context of the DSN, these IMPs will, in

general, appear within the uplink transmit band and as a

self-jamming of the receiving band, regardless of where

they may be generated in a given configuration. Whether

or not they degrade performance depends, of course, on

the frequency and amplitude distribution in either link

for the configuration in question.

Another effect, in the DSN context known as "noise

bursts," has been encountered in single-carrier diplexed

operation in a variety of circumstances (Refs. 7-10). While

this is a continuing concern, an intensive program at

DSS 14 of waveguide maintenance and the reduction and
control of "loose" incidental hardware in the illuminated

portion of the antenna has resulted in some improvement

of the single high-power carrier performance (Ref. 11).

This phenomenon is primarily manifested as an impulse-

like random increase in the receiving system temperature.

In severe form, it has been known to momentarily disrupt

receiver tracking and presumably to degrade the data
streams. More work is needed in this area to correlate

data quality to observed system temperature, but, as yet,

there is no known verified report of loss of operational

data quality attributable to noise bursts.

Of particular concern in the dual uplink mode is the

evidence that the noise burst phenomenon is greatly

intensified under this condition as well as apparently

interacting with, and probably contributing to, the IMP

effect (Ref. 2). I

1Also evidenced in many observations and system temperature re-
cordings taken in the course of recent dual carrier testing at
DSS 14.

III. Status for Viking

The current S-band frequency allocations for the Viking

mission (channels 9, 13, 16, 20) (Ref. 12) have been

selected to preclude uplink IMPs falling "on channel" in
addition to the usual single-carrier criteria (Ref. 1).

One additional consideration was applied to minimize

the level of high order IMPs in the receive band: reduc-

tion of channel separation has the effect of drawing

higher order (and consequently weaker amplitude)

products into the receiving band, some 180 MHz re-

moved from the transmitting band.

Current overall performance at DSS 14 for nominal

40-kW dual carriers provides a minimum carrier-to-

adjacent-channel IMP ratio of 20 dB in the uplink and

receiving band interference in the form of quasi-mono-

chromatic IMPs ranging from the order of -160 dBmW

to a presumed -190 or -200 dBmW level depending

upon which pair of the four uplink S-band channels are

in use at given time. At this time, it is known that the

receiving band IMP has a time-varying (in the spectral

range of 1 Hz) amplitude and or phase modulation com-

ponent and probably has a typical spectral width of more

than 10 Hz. Whether or not the similar spectral charac-

teristics of the noise burst phenomenon are causal or

coincidental has not yet been determined. In addition to

the IMPs, dramatic increases in apparent broadband

noise occur (as monitored by the maser instrumentation

equipment, including system temperature) and are seem-

ingly time correlated to the instantaneous IMP level.

In addition to the maser instrumentation equipment,

the principal instrumentation in use has included con-

ventional spectrum analyzers and the standard DSN

phase-locked receiver. Recent attempts at calibration of

the amplitudes of the weaker IMPs and of their spectral

characteristics by means of digital processing techniques

have offered some qualitative confirmation of these phe-

nomena. Further work in this area is expected to provide

quantitative data which can be applied to the question of

possible degradation of tracking in the presence of this
interference.

These conclusions have been developed for Viking over

the last two or three years and are based primarily upon

the DSS 14 dual-exciter, single 400-kW klystron config-

uration (Ref. 1). Noise burst investigations have also been

conducted at the Goldstone Microwave Test Facility

(MTF), and 100-kW klystron uplink data have been

obtained in the dual 10-kW mode at DSS 13 (Ref. 13).
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Documentation of the DSS 14 work is largely in the form

of informal memoranda for the period of late 1969 to

date. Alternative methods of dual carrier generation have

been considered, notably time sharing (Refs. 14-16), but

do not at this time appear promising for the Viking ap-

plication.

Because two-thirds of the 64-m-diameter antenna sub-

net is scheduled to be equipped with 100-kW klystrons

and because scheduling adequate time at DSS 14 to

pursue these concerns of dual carrier interference is

virtually impossible, an effort has been recently under-

taken to reconfigure DSS 13 for 100-kW single/dual

carrier diplexed test operation (Ref. 13).

This facility, together with continued intermittent

usage of DSS 14, will provide the opportunity to quanti-

tatively bound the interference phenomena, to hopefully

reduce and control them through microwave and antenna

modifications, and, if necessary, to provide the basis of

negotiation of operational solutions to the residual inter-
ferenee.
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Salvaging an Expensive Shaft by Brush Electroplating
H. McGinness

DSlF Engineering Section

An expensive shaft was salvaged by depositing nickel on an undersized bearing

journal. The shaft is a component in the Master Equatorial instrument, required

for the 64-m-diameter antenna of the Deep Space Network. In special cases, this

electroplating process could be considered part of the fabrication method rather

than a salvage process.

I. Introduction

The DSN 64-m-diameter antenna employs a precision

reference instrument, called the Master Equatorial, which

allows the antenna to be directed accurately where de-

sired. Figure 1 shows the fork and polar axle of the

Master Equatorial, a mild steel weldment weighing

approximately 800 kilograms. Its shaft has journals for the

two highly precise (ABEC class 9) angular contact ball

bearings.

Several problems are encountered in grinding the

journals of a shaft of this size to the required accuracy. If

it is turned on dead centers, the process usually assumed

to produce the best degree of roundness, the wear on the

centers will be excessive because of the high weight load-

ing. The addition of a steady rest support, which might

otherwise seem desirable, negates some of the inherent

advantages of turning on dead centers. The fact that the

part is not symmetrical about every plane through the

longitudinal shaft axis means that gravity loading deflec-

tions vary with the angle of rotation. These problems can

be eliminated by mounting the part vertically, as, for

example, on the turntable of a vertical boring mill or

vertical grinder. However, this method introduces another

serious problem: the inaccuracies of the machine turn-

table bearings will be reflected in the journal being

ground.

Thus it is always difficult to obtain simultaneously,

through grinding, the required degree of roundness and

a specified diameter to within a very small tolerance

range, and yet these are exactly the requirements that

must be met to ensure that the installed bearings will
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have their intrinsic accuracies realized. Thin bearings in

particular will conform to the shape of the journal when
installed with a zero clearance or interference fit.

Hence, the roundness of the inner race will be no better

than that of the journal. Obviously a too-small journal

would allow the part to move with respect to the bear-

ing, unless an excessively high axial preload were ap-

plied in order to expand the inner race. But this higher

preload would increase the bearing friction. An increase

in bearing friction would also occur if the bearing journal

is too large, thus producing more interference fit than

desired. From the bearing performance point of view, it

is necessary that journal roundness to a specified diam-
eter be maintained.

II. Hand Salvaging of Shafts

Recently two fork and axle units were manufactured

for use at DSS 43 and DSS 63. The journals were ground

by a tool post grinder mounted on a vertical boring mill.

It was determined experimentally that the machine

runout was quite small and that the machine-made

journals would be near enough round so that a moderate

amount of hand work would make them satisfactory. It

was agreed to attempt to grind them to a diametral

dimension from 0 to 8.0 #m over the upper dimensional

limit. The lower dimensional limit is 5.0 _m less.

This process worked out very well for the first shaft.

A moderate amount of hand lapping produced a surface

round to within 0.50 _m and within the dimensional

limits of the drawing.

However, the large journal of the second shaft came

out undersized by approximately 12.0 t_m. After hand

lapping to achieve roundness, it was undersized by

17.0 _m.

This shaft was then brush electroplated using the pro-

prietary "Dalic Process," which is a method of electro-

plating localized areas without using immersion tanks.

Various metals can be deposited onto conductive surfaces

from highly concentrated electrolyte solutions which are

held in absorbent materials attached to portable elec-

trodes. Thickness of the deposited metal can be con-

trolled by an ampere-hour meter.

A nickel solution was chosen for electroplating the

shaft. The result was not uniformly thick, thus requiring

some additional hand lapping to restore roundness. It is

believed that the lack of thickness uniformity was caused

by the necessity of stopping the turning of the part fre-

quently during plating in order to replenish the solution.

A more sophisticated arrangement could have prevented
this.

Thus a very expensive part was salvaged through an

inexpensive process. It may be that for bearing journals

of this size, where roundness and dimension must be met

simultaneously, the designer should consider this kind of

brush plating as part of the fabrication method, rather

than as a strictly salvage process.
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Performance of the 64-meter-diameter Antenna Servo

P. Lipsius
DSIF Engineering Section

A 64-m-diameter antenna has been installed and tested at the Tidbinbilla Deep

Space Station in Australia. Part of the final acceptance testing was demonstration

of antenna servo performance. This report summarizes the maior tests and the

resulting data.

The antenna servo as implemented during these tests

consisted of three feedback control loops: a current loop,

a rate loop, and a manual position loop (Fig. 1).

The testing process started with frequency response

tests of the closed current loop on each axis. For the com-

plete response plots, see Figs. 2 and 3. The specification

on the current loop was a bandwidth (defined as the

frequency at which the response reaches 90 deg) greater

than 150 Hz and less than 6 dB of peaking. Review of

Figs. 2 and 3 shows that for the azimuth axis the band-

width is 1100 Hz and the peaking is 4.5 dB; for the ele-

vation axis the bandwidth is 1100 Hz and the peaking is
4.2 dB.

Open rate loop tests were then run to determine the

frequency location of various resonances - hydraulic,

natural structural, and other structural resonances, some

of which are tabulated below:

Location Azimuth, Elevation,
Hz Hz

Hydraulic 1.1 1.2

Natural (first) structural notch 1.5 2.1

Next 2.5 4.0

Next 3.0 8.0

Resonance 20.0 40.0
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From these tests and data a compensation network was

developed to close the loop with a bandwidth frequency

of 5 Hz, minimum phase shift at the position loop band-

width frequency, and maximum attenuation of peaking

responses above 5 Hz.

The next test was the frequency response of the closed

rate loop. For the complete response plots see Figs. 4 and

5. This test was run under two conditions: (1) a steady-

state rate of 0.05 deg/s was applied to the antenna;

(2) a zero steady-state rate condition. The specification on

the rate loop is a nominal bandwidth of 5 Hz. Review of

Figs. 6 and 7 shows that the following responses were
achieved:

Axis Zero rate, Itz 0.05-deg/s rate, Hz

Azimuth 5 5

Elevation 4.7 5

The last loop tested was the manual position loop,

which corresponds to the closed loop used during normal

spacecraft tracking. The position loop has two band-
widths available and was tested in both modes. The

specification value for the high bandwidth mode is

0.2 Hz; in the low bandwidth mode the specification is

0.02 Hz. The frequency response plots for azimuth and

elevation axes are shown in Figs. 6 and 7. Review of

these plots shows that the following bandwidths were
obtained:

Axis High bandwidth, Hz Low bandwidth, Hz

Azimuth 0.20 0.0135

Elevation 0.205 0.019

A further test was made to verify position loop stability

under simulated conditions of wear, aging, and signal

degradation by varying the position loop gain by + 3 and

-3 dB increments. Step responses under these conditions

showed that control system stability was maintained.

Other tests of significance to antenna tracking per-

formance are (1) tracking error with the antenna moving

at a rate of 0.0015 deg/s, which corresponds approxi-

mately to a sidereal rate, (2) pointing jitter under a static

position command, and (3) the minimum velocity the

antenna is capable of maintaining. These results are
tabulated below:

Test Azimuth Elevation

Tracking error

maximum 0.00082 deg 0.00101 deg

peak-peak

average 0.00006 deg 0.00005 deg

Pointing jitter ±0.00012 deg ±0.00032 deg

Minimum velocity 0.0002 deg/s 0.0005 deg/s

Various other tests were also performed: full speed

(0.5 deg/s) tests through the complete travel range;
verification of the two sets of electrical travel limit

switches as well as the "deadman" emergency hydraulic

limit valves; and tests on the control logic circuits in-

volved in turning on (and off) the antenna drive and

hydrostatic bearing hydraulic systems, which were per-

formed to ensure satisfactory operation and "fail-safe"
shutdown characteristics.

The antenna servo and the associated controls were

completely tested and found to be achieving satisfactory

specification performance.
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Network Operations Control
R. J. Amorose

DSN Engineering and Operations

The DSN Operations Control Team controls and operates the DSN in real-

time to support Flight Proiect Operations. DSN Operational Control, a mission-

independent organization, is headed by the DSN Operations Chief, who is

supported by the DSIF Operations Chief, GCF Operations Chief, Network Oper-

ations Analysis Chief, and Network Operations Support Chief. The real-time

operation is supported by two non-real-time functions, with liaison provided by:

(1) the DSN Operations Representative, who represents the DSN organization

to the DSN manager and Flight Pro_ect Chief of Mission Operations, (2) the DSN

Scheduling Representative, who schedules DSN resources for _ight proiects.

I. Introduction

The DSN Operations Control Team (OCT), headed

by the DSN Operations Chief (OC), controls and oper-

ates the DSN in real-time to support Proiect flight oper-

ations. On July 1, 1972, real-time DSN Operations was

reorganized as illustrated in Fig. 1. The DSN Operations

organization ensures that standardized methods will be

used for support of each flight proiect, while at the same
time maintaining the capability for responding in real-

time to nonstandard anomalies and emergencies.

II. Responsibilities

DSN operational control is provided by the missiou-

independent DSN Operations organization. Functional

responsibilities of the DSN OCT are as follows:

(1) Operate the network to meet the requirements of

several flight proiects simultaneously.

(2) Operate the DSN Monitor System.

(3) Operate the DSN in support of proiect simulation
activities.

(4) Operate the DSN in support of compatibility test-

ing.

(5) Support maintenance of the operational network.

(6) Produce the Original Data Records (ODRs).

(7) Perform real-time (through the 7-day schedule) al-

location of resources based on guidelines of the

DSN Network Allocation System.

(8) Respond to the requirements of Tracking Data

System (TDS)/flight proiect interface documenta-
t-ion.

(9) Perform, in real-time, analyses of telemetry, track-

ing, and command operations to ensure that the
network has met its commitment.

JPL TECHNICAL REPORT 32-1526, VOL. Xl 157



III. DSN Operations Control Team
Organization

The operating positions and organizational responsi-

bilities of the key members of the OCT are described in

the following paragraphs.

A. DSN Operations Chief

The DSN Operations Chief (OC) is responsible to the

DSN Operations Manager for the overall direction of

DSN operations and is specifically responsible for proper

operation of the DSN resources committed to the Project.
The DSN OC directs and coordinates the activities of

the Network Operations Analysis Chief, DSIF Operations

Chief, GCF Operations Chief, and the Network Oper-

ations Support Chief in the real-time operation of com-

mitted resources. The DSN OC is the controlling interface

for the DSN with the Mission Control and Computing

Center (MCCC) Operations Controller (OPSCON). The

DSN OC coordinates the isolation of equipment or pro-

cedural problems and any required corrective or con-

tingency actions. The DSN OC controls the real-time

configuration of the DSN and resolves any conflicts in

the use of DSN resources that arise during periods of

operational support. He is responsible for the coordina-

tion of end-to-end systems data flow. He is also responsible

for keeping the flight projects advised of DSN status.

B, DSIF Operations Chief

The DSIF Operations Chief provides real-time direc-

tion and control of DSIF operations. He controls com-

mitted DSIF resources and the real-time configuration

of DSIF equipment and procedures.

C. GCF Operations Chief

The GCF Operations Chief directs and controls the

operations of the GCF in real-time. He coordinates circuit

requirements with the NASA Communications Network

(NASCOM) and controls the real-time configuration of
the GCF.

D. Network Operations Analysis Chief

The Network Operations Analysis Chief supervises

and coordinates the activities of the real-time Tracking,

Telemetry, Command, and Monitor Systems Analysts

(described below).

1. Tracking System Analyst. The real-time Tracking

System Analyst determines the performance of the Track-

ing System and recommends corrective action in ease of

failure or substandard performance. He is also responsible

for the generation of tracking predictions and providing

real-time recommendations in support of spacecraft ac-

quisitions and tracking. He provides a real-time technical

interface with the Project navigation area and Project

telecommunications analyst.

2. Telemetry System Analyst. The real-time Telem-

etry System Analyst determines the performance of the

Telemetry System and recommends corrective action in

case of failure or substandard performance. He is also

responsible for the generation of DSN telecommunica-

tion predictions and provides real-time recommendations
to isolate the problem in the case of any nonstandard

acquisition. He provides a real-time technical interface

with the Project telecommunication analyst.

3. Command System Analyst. The real-time Command

System Analyst is responsible for monitoring and analyz-

ing the operation of the DSN Command System. He is

responsible to the DSN Operations Chief for defining,

isolating, and recommending solutions to problems that

occur in the DSN Command System, In addition to this

monitoring function, the Command System Analyst gen-

erates and transmits the standards and limits, configura-

tion, and test commands utilized at the Deep Space

Stations. The Command System Analyst determines the

DSN data record outages and coordinates the required

playback from the DSS digital ODR. He provides a

real-time technical interface with the Project Command
Team.

4. Monitor System Analyst. The Monitor System pro-

vides the capability for sensing certain characteristics

of the various elements of the network and for processing

and displaying these data for use by the network oper-

ations personnel. Monitor data are used for determining

status and configurations, for guidance in directing net-

work operations, for furnishing alarms of nonstandard

conditions, and for analysis of quality and quantity of

data provided to the Project.

5. Real-Time Monitor Analysis Team. ]'he Real-Time

Monitor Analysis Team is responsible for the following
tasks :

(1) Maintain continuous operational control of the

Monitor System.

(2) Monitor and analyze the performance of the Mon-

itor System.

(3) Gather and validate standards and limits for all

network systems.
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(4) Maintain continuous interface with the Opera-
tions Control Chief.

(5) Perform computer I/O functions necessary for the

support of system operation,

(6) Participate in system tests and analyze results.

(7) Maintain system logs and records.

(8) Generate pass folder and transfer to ODC.

(9) Generate postpass reports.

(10) Maintain status display board.

(11) Monitor technical information service.

E. Network Operations Support Chief

The Network Operations Support Chief is responsible

to the DSN Operations Chief for the direction and co-

ordination of real-time and near-real-time operational

support functions that are performed by elements of the

DSN Scheduling and Discrepancy Reporting Group and

the DSN Operational Data Control Group. These func-

tions include real-time scheduling, sequence of events

generation, data traceability and reporting, and discrep-

ancy reporting.

IV. Non-Real-Time Operational Roles

A. DSN Operations Representative

A DSN Operations Representative is appointed for

each flight project utilizing the DSN. His function is to

represent the mission-independent DSN operations or-

ganization to (1) the DSN Manager and his DSN Support

Team and (2) the Flight Project Chief of Mission Oper-

ations (CMO) and his mission operations team.

Responsibilities are defined for the periods before and

after formal transfer of operational responsibility from

the DSN Manager to the DSN Operations Chief (OC).

This transfer will nominally occur approximately 6 months

prior to launch. Responsibilities before operational trans-
fer are as follows:

(2)

(2)

(3)

Provide liaison between the DSN Manager and the
DSN OC.

Act as operations advisor to the DSN Support
Team.

Flag conflicts between planned activities and DSN

operational capabilities; assist in resolving these
conflicts.

(4) Review integration schedules prepared by the sup-

port team; ensure that all milestones are in agree-

ment with DSN operational implementation
schedules.

(5) Interpret DSN operational philosophy, capabilities,

and requirements to other DSN/TDS elements and

to flight project mission operations teams.

Responsibilities after operational transfer are as fol-
lows:

(1) Act as DSN operations advisor to the flight project

mission operations team.

(2) Participate in mission operations planning meet-

ings; flag conflicts between planned activities and

DSN operational commitments; assist in resolving
these conflicts.

(3) Coordinate planned activities with the DSN oper-

ations organization; transmit necessary instruction
and information to the DSN OC.

(4) Act as operations advisor to the DSN Manager in

planning and developing support for nonstandard

operations.

(5) Provide sequence of events (SOE) inputs, neces-

sary for flight project support, to the DSN Sched-

uling Group,

B. DSN Scheduling Representative

Each major project that uses the DSN will be assigned
a Scheduling Representative by the DSN Scheduling

Office. The duties and responsibilities of the Scheduling

Representative are as follows:

(l) Be responsible for scheduling, within the frame-

work of the DSN Network Allocation System, all

Project activities and Project-related DSN activities
from the establishment of DSN configuration con-

trol at (nominally) launch minus 6 months until the

end of the operational mission and for the duration

of extended mission operations, if any.

(2) Following the establishment of DSN configuration

control, interface with the DSN Operations Repre-

sentative for all special operational scheduling

requirements and for Project-related DSN Opera-
tions Control Team scheduling requirements.

(3) Interface with the Supervisor of DSN scheduling

for overall and Project-related ground rules, priori-
ties and constraints.
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High-Speed Data Communication:

A Description of Software Techniques

R. W. Livermore

Tidbinbilla Deep Space Communications Complex

Some methods are described of using the high-speed data assembly of the

Ground Communications Facility operating at 4.8 kbps and the Xerox Data Sys-

tems (XDS) 920 computers for keeping the Deep Space Stations supplied with

up-to-date programs and documentation. The present method for transmitting this

information employs magnetic tapes, punched tapes, and hardcopy documentation

transmitted by mail or air freight.

I. Introduction

The present system of keeping stations supplied with

up-to-date programs and documentation is to dispatch

magnetic tapes, punched tapes, and documentation by

mail or air freight. This article describes some methods

of using the high-speed data assembly (HSDA) operating

at 4.8 kbps and Xerox Data Systems (XDS) 920 computers
for this communication.

II. Description of Data Transmission

Blocks of high-speed data (HSD) require codes such as

a synchronization code for the start of a block, source, and
destination code and a code to route the block to the

appropriate computer. During initialization this informa-

tion is entered on the typewriter connected to the com-

puter in the form of answers to an interrogation (e.g.,

STATION ID =). After these codes have been allocated

space in the HSD block, the programmer is left with 44

full 24-bit words for other information. The method of

transmission adopted requires the following extra infor-
mation to be included in a block of HSD:

(1) An indication to the remote station that a block has
been received with a bad error status and not stored.

(2) Address information of where to store the message
or effective data of the block.

(3) Whether it is a one-only block.

(4) Whether it is a first block with more to follow.

(5) Whether it is a last block.

(6) Whether it is an intermediate block.

(7) If it is (3) or (5), an indication of which peripheral
device the data are for and how much are to be

outputted.

(8) A serial number for each block.
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The desired information for (1) to (6) uses one 24-bit
word. An additional three words are used for blocks of

type (6) with information for peripheral devices and where

programs should commence. The serial number of (8) is
accommodated in a 1/.,,word available in word 49. This

leaves space for 43 words of data in the first and inter-

mediate blocks. Last blocks have space available for 40
words of data.

III. High-Speed Data Validation Techniques

A simplified flowchart of HSD validation is presented

in Fig. 1.

A. Sending

A HSD block is sent with an initial serial number of

zero.

B. Receiving

The receive computer examines the GCF error status.
If the block is in error the data are not stored and word 4

is made all is and the block sent back for verification. If

the error status is good, words 5 to 48 are stored in the

area indicated by word 4 and sent back for verification. If

the block serial number is the same as a previous block

received, the data are not stored and the block is sent back
for verification.

C. Sending

After sending a block, the sending program waits for
a block to be returned for verification. If a block is not

returned within 2 s, the block is sent again. If the error

status of the returned block is bad, the block is sent again.

Word 4 is examined and if it is all ls (indicating an error

at the receive station) the block is sent again. If word 4 is

not all ls, words 4 to 48 are then compared with the orig-

inal data sent. If they do not compare, the block is sent

again. If the data verify correctly, the serial number is

incremented by i and the next block of data is sent.

IV. Media Validation Techniques

After a program has been received and punched on

paper tape or written on magnetic tape, two levels of vali-
dation are available:

(1)

C2)

A simple check sum is made of all characters with a

punched tape. Similarly a check sum is made of all

words on a magnetic tape.

An extremely accurate check can be made by using
the Ground Communications Facility (GCF) error

detector encoder. The HSD program is initialized

to return data to itself while simulating transmission

of a program. As each HSD block is returned, the

33-bit polynomial check code is punched onto tape.

The resultant tape must be the same every time the

check is performed with an identical program.

V. Documentation Preparation

The Editor Program DOI-5250-SP can be used to pro-

duce a punched paper tape ready for transmission. Source

programs which are stored on punched cards can be trans-

ferred to punched paper tape by use of the Media Program

DOI-5012-SP-A. Then the program can be assembled

locally by use of Monarch DOI-5254-SP-A, and the receiv-

ing station can produce as many listings of the program
as desired.

Standard forms can be prepared by use of the Editor

Program and stored on punched paper tape. The typist

can then make the required entries and produce tapes for
transmission.

VI. Future Expansion

Very often a computer is not available for document

preparation. Preparation on an off-line teletype machine

could be performed. A simple conversion program to con-

vert from 5-level TTY code to 7-level XDS code is being

considered. An addition to the Editor Program to enable

direct writing onto magnetic tape is also being considered.

The program has also included an option which allows

programs to be sent to core and operate, e.g., a magnetic

tape test. By careful programming it can be arranged to

return to the HSD program with results of the test. This

portion of the program has not been exercised at the time

of writing this article.
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Accuracy of the Signal-to-Noise Ratio Estimator:
A Comment on the Derivation

of the Estimator Mean

J. R. Lesh

DSlF Operations Section

The mean of the signal-to-noise ratio estimator used with the symbol syn-

chronizer assembly (SSA) is derived without assuming independence of the sample

mean and sample variance errors. The resulting expression is found to differ only

slightly from a previous expression determined by assuming independence.

I. Introduction

In Ref. 1, expressions for the mean and variance of

the signal-to-noise ratio (SNR) estimator were derived

and studied. However, in the derivation of these expres-

sions the assumption was made that the error in the

sample mean is independent of the error in the sample

variance. This assumption has been the target of some

criticism since the errors that produce the error in the

sample mean are precisely the same errors that create the

error in the sample variance. To answer this criticism,
the mean of the SNR estimator was rederived without

the assumption of independence of these errors. It was

found that the error produced by the independence

assumption is negligible for even moderately small sample

sizes (in fact, for a sample size of 10, the corresponding

error in the estimator mean is bounded by 3.7%).

II. Derivation of the Estimator Mean

We begin by assuming that the reader is familiar with
the notation and results of the referenced article. Then

the estimated SNR is given by

1/1 _' \2

N -- 1 Y_ -- : YJ
i=1

Now assume that yi --- _ + _i where _i is the error (from

the mean _) of the ith sample. The _i are assumed to be

independent, identically distributed, zero-mean random

variables having a variance _z. Furthermore, since we

desire to apply the Central Limit Theorem (to the sample

mean only) we can obtain the same result by assuming
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the _'s are gaussian distributed initially. Thus, the esti-

mated SNR can be expressed as

: . +: (2)

N-i F --N j_.'J)

where the summations are over the N samples. Now by

adding and subtracting ,2 to the denominator and ex-

panding the result in a geometric series we have

where

2/z

a+a 2)+-_F _i(1--a+a 2)

+_ ki (l--a+a _) (3)

where T:, Tz and Ta are the three terms in the bracket

of Eq. (3). Now consider the terms separately. For T:,
we have

F,(T,) = _. - _2E(_) + CE(_) (6)

But note that a is the error of the sample variance. Thus,

E((,) = o

2

E(_) - _'_ (7)
0 ,4

where %_z is the variance of the sample variance. There-
fore

/x2
= ' (8)E(T,) tlz + "_ %v

_ I (_i 1 _j)2 (4)a o._(N_ 1)F --N_ --1

Therefore, the mean of the estimator can be expressed as

^ 1
E{R} _ _ [E(TI) + E(T=) + E(T3)] (5)

20 ,2

For T=, note that all of its terms involve odd powers of
the ki's. Thus, since the odd moments of a zero-mean

gaussian random variable vanish we have

E(T=) = 0 (9)

To compute the expectation of Ta we must first expand
the a's. Using the definition of a we have

E{T_} = E '_ Nz0,2(N -- 1) '_' _/_ + N30,_(N - 1) _'

1 [(_i )2(_ ),] 2 (F)" 1 (_i)6 fq- N20,4(N _ i)2 _i _ NZtr4( N __ 1)2 _i __,_ + N,0,4(N _ i)z _i
J

(lO)

To evaluate the expected value of these terms is not

difficult in theory but does require a very large amount

of algebra. For example, the summation in the first term

can be expanded to yield

(z ,÷
and by using the independence of the _i's we have

E{(_ ,i) 2 } =Nc' (12,

By similarly expanding the remaining terms and taking
the expected value,

1

E{T3} = N3(N _ 1)' (N` -- N= + 6N + 6)e =
(13)

Combining the expected values of T e T=, and T3 yields

.' [ ' 0,__L
0"81 _

-_(N3--N=+3N+3)(N2--__l)(¢2)]_/-7_ -__-_) _-_'_2 (14)

Now, we note that (see Ref. 1)

1

and from Appendix A of the article we know that for

gaussian random variables

2
2 -- Or_a'v N -- 1
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Thus, Eq. (14) becomes

E{R} _ ----,,,,_.1+ _ +

-- O's_

2N  LX+7+ 

N _ -- N z + 3N + 3
+

N (N - 1)

(15)

where

k

N 3 -- N 2 + 3N + 3

N_(N -- 1)

Returning now to Ref. 1 (Eq. (8)) we found that the
expression for the estimator mean was

[1 + A + B + AB] (16)

where

2

A = _-; and B a,

Equations (15) and (16) are identical except for the

factor k multiplying the AB term of Eq. (15). Thus, if k

is close to 1, then the original assumption of indepen-

dence of the sample mean and variance errors is justified.
However, note that

3(N + i)
k=l+

N_(N -- 1)

Thus, k is indeed close to unity for even moderate N.

For example, if N = 10, then K = 1.037, so that the

estimator mean is increased by approximately 3.7% if

AB >>1 + A + B and is increased by a much smaller per-

centage otherwise.
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